BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY) COLLEGE OF ENGINEERING, PUNE B. Tech. (Electronics and Communication): Sem- III (CBCS 2023 COURSE)

	Program: B. Tech (ECE)			Sen	Sem-III NEP CBCS 2023 Course																	
Sr.	Category	Cours Name of the course		Cours Name of the course		Cours Name of the course		Cours Name of the course		To S	eachi Schen	ng ne		E	xamin (ation Mark	Schei s)	me	(Credit	8	
No.		ecode		L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total						
1.	Department Core Course		Sensors & Control Systems	3	-	1	60	40	-	-	-	100	3	-	1	4						
2	Department Core Course		Signals & Systems	3	2	I	60	40	25	-	25	150	3	1	-	4						
3.	Department Core Course		Digital Electronics	3	2	-	60	40	25	-	25	150	3	1	-	4						
4.	Department Application Course		Analog Circuits & Applications	3	2	-	60	40	25	25	-	150	3	1	-	4						
5.	Interdisciplinary Course		Data Structures	3	-	-	60	40	-	-	-	100	3	-	-	3						
6.	Skill based course III		Electronics Instrumentation & Measurement	-	2	-	-	-	25	-	25	50	-	1	-	1						
			Total	15	08	1	300	200	100	25	75	700	15	4	1	20						
	MOOC-I*			-	-	_	-	-	-	-	-	-	-	-	-	2						
	Value Added Course*		Introduction to Arduino Framework	2	-	-	-	100	-	-		100	-	-	-	2						

* Indicate this is mandatory but the credits will not be considered in SGPA/CGPA

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune							
	B. Tech. (Electronics & Communication Engineering) Sem III							
			Sensors and Control Systems					
TEA	ACHIN	G SCHEME:	EXAMINATION SCHEME: CREDITS	S ALLOTTED:				
Theory: 03 Hrs. / Week			End Semester Examination: 60 Credits:02 Marks Credits:02	3				
			Internal Assessment: 40 Marks					
Tut	orial:01	Hrs. / Week	Credit:01					
			Total:100 MarksTotal Cre	dits :04				
Cou	irse Pre	-requisites:						
The	student	s should have basi	c knowledge of					
1.	Engin	eering Physics.						
2.	Engin	eering mathematic	S	1				
	irse Ou	tcomes: After suc	cessfully completing the course, the students will be al	ble to:				
1.	Identi	ty the different ty	pes of resistive sensors, electromagnetic sensors.					
2.	Illustra and Pl	ate the working proto detectors.	inciple, construction and applications of Self-Genera	ting Sensors				
3.	Identi: 'Block	fy various control diagram reductio	systems and determine the 'transfer function' of S n' and 'Signal Flow Graph'.	ystem using				
4.	Deterr	nine the 'Static]	Error Coefficients' and 'Steady State Error' in var	ious control				
5.	Evalua plot.	ate the stability of	f a system using Routh's stability criteria, Root Loc	us and bode				
6.	Comp contro	are various contr ller.	ol actions such as Proportional, Integral, Derivati	ve and PID				
UN	IT - I	Introduction to	Sensors	06 Hrs.				
		Resistive Sensor	s: Thermocouple, Thermistors, Strain gages, Resistive					
		Temperature Det	ectors, light-dependent resistors.					
		Reactance Variat	ariation and Electromagnetic Sensors: Capacitive sensors,					
TINI	тп	Solf Concreting	S, Electromagnetic sensors.	06 Une				
UN	11 - 11	Sen-Generating	Sensors and I noto detectors.	00 1115.				
		Working princip	les of Thermoelectric sensors, Piezoelectric sensors,					
		Electrochemical	sensors.					
		IR Sensor and Photo Detectors: photoconductive detectors, Photo diodes,						
UN	IT -III	Control System	ontrol System Classification					
		Open loop, close	ed loop, Feedback and Non-feedback Systems, contin	uous,				
		discrete, linear a	nd non-linear control systems. Transfer Function, An	alysis				
		of Transfer Fund	ction using Block Diagram reduction technique and s	signal				

	flow graph.	
UNIT -	Time Domain Analysis	06 Hrs.
IV		
	Transient and steady state responses of first and second order systems,	
	Static error Coefficients (K _p , K _v , K _a), steady state errors, control of transient	
	response, Basic control actions and their effects on transient response.	
UNIT - V	Stability	06 Hrs.
	Stability concepts, Routh's stability criterion, Root loci, properties and	
	construction of root loci, effects of adding of poles and zeros, Stability	
	analysis using Root Locus and Bode plot, Nyquist stability criteria.	
UNIT -	Controllers	06 Hrs.
VI		
	Control actions: On/Off Controller, Proportional Controller, Integral	
	Controller, Derivative Controller, Proportional-Integral(PI) Controller,	
	Proportional-Derivative(PD) Controller, PID Controller.	
Project Bas	sed Learning: The students are expected to perform a project (in a group) bas	sed on
the course a	nd prepare a report for the same. The report should be as per standard guideline	es.
Tutorial: S	tudents are expected to complete minimum six tutorial.	
Text Books	:	
1. A. K	K. Sawhney, Electrical and Electronic Measurements and Instrumentation, D	hanpt
Rai	and Co. Ltd.	-
2. K.C	gata, Modern Control Engineering –3rd Edition, Prentice Hall of India, 1997.	
Reference l	Books:	
1. J. N	agrath & M. Gopal, "Modern Control Engineering", New Age International, New	ew Delhi
New	Age Int. Pvt. Ltd. Publishers, 5 th Edition 2008.	
2. H S	Kalsi, Electronic Instrumentation, Tata McGraw-Hill.	

	Bharati Vidyapeeth (Deemed to be University)							
	B. Tech. (Electronics & Communication Engineering) Sem- III							
		× ×		2/				
			SIGNALS & SYSTEMS		OTTED			
TEA	CHING	J SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:			
The	ory: 03	3 Hrs. / Week	End Semester Examination: 60 Marks	Credits: 03				
Prac	ctical: 0	2 Hrs. / Week	Internal Assessment: 40 Marks					
			TW: 25 Marks	Credit:01				
			OR: 25 Marks					
			Total:150 Marks	Total Credits: 0	4			
Cou	rse Pre-	-requisites:						
The	students	s should have basi	c knowledge of					
1.	Engine	ering Mathematic	cs-I					
2.	Engine	ering Mathematic	cs-ll					
	rse Out	comes: After suc	cessfully completing the course, the stude	nts will be able to	:			
1.	Differe	entiate various sig	nals and perform operations on signals.					
2.	Classif	y systems based oution	on their properties & determine the respor	nse of LSI system	using			
3.	Apply	Fourier Series and	1 Fourier Transform concepts for continue	ous time signals				
4.	Analyz	the continuous	time systems with Laplace Transform.	sus time signais.				
5.	Apply	Z-transform for th	ne analysis of discrete time systems.					
6.	Compr distribu	ehend basic pr utions.	inciples of probability, random varia	ables and proba	ability			
UNI	T - I	Introduction to	signals		06 Hrs.			
		Signals and Syst	ems definition, Types of signals, continue	ous time(CT) and				
		Discrete time (I	DT) signal operations, Amplitude scaling	g, Time shifting,				
		Time reversal, Time scaling, Mathematical operations additions,						
		subtraction, mul	ibtraction, multiplication of signals, Classification of signals according to					
		their property, I	Periodic/Aperiodic, Even/Odd, Energy/Po	ower/Causal/Non				
UNI	T - II	Time domain r	epresentation of LTI System		06 Hrs.			
		Introduction to	systems Classification of systems and	cording to their				
		properties. Line	ear/Nonlinear. Static /Dynamic. Time	Invariant/Time-				
		variant, Causal	/non causal, Stable/Unstable, Invertibl	e/Non-Invertible				
		systems, LTI sys	stem: Causality, stability, step response, in	mpulse response,				
		Convolution Inte	egral, convolution sum using graphical me	ethod, properties,				
		and applications						
TINI	T 111	Louise T (
UNI	1-111	Laplace I ransf	OLIII		vo Hrs.			

	Introduction, Unilateral and Bilateral Laplace Transform of signals, Region					
of convergence (ROC) and its properties. Laplace transform of standard						
	signals, Inverse Laplace Transform, Solution to differential equation,					
	System transfer function, Poles and zeros representation.					
UNIT-IV	Fourier Analysis of signals	06 Hrs.				
	Fourier Series: - Fourier series of CT and DT signals and its properties Exponential and Trigonometric Fourier series of periodic signals, amplitude and phase spectra of periodic signals, Fourier Transform, Fourier Transform of standard signals, Properties of Fourier Transform and its applications.					
UNIT - V Z-Transform						
	Z-transform, Region of convergence and its properties, Inverse Z- transform, properties of z transform, Z-transform pairs, relation between Z and Laplace Transform, Analysis, and characterization of discrete time LTI systems using Z-transform, solution of difference equations.					
UNIT-VI	Principles of Probability	06 Hrs.				
	Introduction, sample space and events, Axioms of probability, Addition and multiplication theorems, conditional probability, Bayes' Theorem, Probability density function, cumulative distribution function, Random variables, Introduction to Autocorrelation & Cross correlation					
Term Worl	K:					
The term we	ork shall consist of record of minimum eight experiments.					
1. Introd	uction to MATLAB and its basic functions.					
2. Genera	tion of Continuous and discrete time signals.					
3. Perform	n signal operations on Continuous and discrete time signals.					
4. Detern	nine even and odd parts of the signal and find real and imaginary parts of signal	al.				
5. Compu	ite linear convolution and convolution integral of signals.					
6. Compu Magni	Ite Fourier Transform and Inverse Fourier Transform of a given signal and p	lot its				
7. Solutio	on of difference equations to find the zero input and the zeros state responses					
8. Comp	ite and plot the impulse response and pole-zero diagram of transfer function					
9. Detern	nine Discrete time Fourier Transform (DTFT) a given signal. Verify its proper	rties				
10. Detern	nine the impulse response and frequency response of a LTI system from it	ts Z-				
Transf	orm.					
11. Compu	te autocorrelation & cross correlation of the signals.					
12. Wavef	orm Synthesis using Laplace Transform.					
Project Bas	sed Learning: Students are expected to perform a project (in group) based of	on the				
course and p	prepare report for the same. The report should be as per the standard guideline	2 S .				
Text Books:						
1. Oppen	heim, Willsky, S. Hamid Nawab, "Signals and Systems", PHI.					
2. M.J. R	2. M.J. Roberts, "Signals and Systems", McGraw-Hill.					

- 3. B.P Lathi, "Principles of linear systems and signals", Oxford.
- 4. Veerarajan T., Probability, Statistics and Random Processes, Tata McGraw Hill,1st Reprint 2004.

- 1. Simon Haykin and Bary Van Veen, "Signals and Systems", Wiley- India Publications.
- 2. Michal J. Roberts and Govind Sharma, "Signals and Systems", Tata Mc-Graw Hill.

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune								
	B. Tech. (Electronics & Communication Engineering) Sem III							
		DIGITAL ELECTRONICS						
TEACH	IING SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:				
Theory:	03 Hrs / Week	End Semester Examination: 60 Marks	Credits :03					
Practica	al: 02 Hrs. / Week	Internal Assessment: 40 Marks						
		TW: 25Marks	Credit:01					
		ORAL:25 Marks						
		Total:150 Marks	Total Credits :)4				
Course	Pre-requisites:							
The stud	lents should have basic	knowledge of						
1. Ele	ectronic components ar	nd Devices						
Course	Outcomes: After succ	essfully completing the course, the student	s will be able to:	1 •				
	rtorm number system	conversion, study codes & to apply the	knowledge of	binary				
	thmetic s.	loop alashes and other minimization tooks	inner for digital					
Z. Ap	opiy knowledge of Boo	lean algebra and other minimization techni	iques for digital					
3 Ide	outify formulate and a	lya a problem based on combinational circ						
$\frac{J}{4}$ To	apply the knowledge of	of flip-flops for designing sequential circuit	t					
$\begin{array}{c c} 4. & 10 \\ 5 & \mathbf{\Lambda n} \end{array}$	apply the knowledge of	ale sequential logic circuit using shift regi	ters & Counter	2				
6 To	differentiate between	the PLDs and logic families TTL_CMOS		5.				
UNIT -	I Number system	n. Binary Arithmetic's& Codes		06 Hrs.				
UIUI	Analog System.	digital system, numbering system, binary	number system.	001115				
	octal number sv	octal number system, hexadecimal number system, conversion from one						
	number system	to another, Signed Magnitude representation						
	Subtraction usin	g 1's complement and 2's complement me						
	codes binary coo	led decimal, non-weighted codes Excess -	3 code, Gray					
	code, Alphanum	eric codes – ASCII Code, EBCDIC.						
UNIT -	II Boolean Algebr	a and Logic Gates		06 Hrs.				
	Introduction, Lo	gic (AND OR NOT), exclusive OR and Ex	xclusive NOR					
	gates, Universal	Logic gates, Boolean theorems, Boolean I	Laws, De					
	Morgan's Theor	em, Reduction of Logic expression using I	Boolean					
	Algebra, Derivii	ng Boolean expression from given circuit.						
	Introduction m	interms and sum of Minterm form Maxter	m and Product					
	of Maxterm for	Introduction, minterms and sum of Minterm form, Maxterm and Product						
	variable Groupi	ng of variables in K-mans K-mans for pro	duct of sum					
	form, minimize	Boolean expression using K-map. Don't ca	are conditions					
	Quine Mc Clusk	tey Method.						
UNIT -I	II Combinational	Logic Circuits		06 Hrs.				
	Arithmetic Circ	uits: Introduction, Adder & Subtractor (Ha	lf and Full),					

	Parallel Binary adder, Serial Adder, BCD Adder, Look-Ahead Carry	
	Generator, ALU, Code Converters, parity bit generator & checker, 1bit,2-	
	bit Comparators, Decoder, Encoders, Priority encoders, Multiplexers, De-	
	Multiplexer.	
UNIT - IV	Sequential Circuits Elements	06 Hrs.
	Flip-flop & Timing Circuits: SR latch, Gated latch, level Triggered	
	&Edge triggered flip-flop: - SR, D, JK, T Flip-flop, flip-flop	
	asynchronous inputs, characteristic table of Flip-flop, excitation table of	
	Flip-flop, master slave JK flip flop, inter conversion of Flip-flop.	
	Introduction to Mealy and Moore machines, definition of State diagram,	
	State table, State reduction, State assignment.	
UNIT - V	Applications of Sequential circuits	06 Hrs.
	Shift register, buffer register, Bidirectional shift register. Data	
	transmission in shift register SISO, SIPO, PISO, PIPO, universal shift	
	register, Shift Left, shift right register operation. Counter, Modulus of the	
	counter, Classification Ripple or asynchronous counter, synchronous	
	counter, up-down counter, Mod-n counter, Ring counter, Johnson counter,	
	Designing counter with arbitrary sequence.	
UNIT - VI	Programmable Logic Devices, Memory & Logic Families	06 Hrs.
	Programmable logic devices	
	Study of PROM, PAL, PLA, designing combinational circuits using	
	PLDs. Semiconductor memories: Classification and characteristics of	
	memories, RAM ROM, EPROM, EEPROM, NVRAM, SRAM, and	
	DRAM.	
	Logic Families	
	Significance of families, Characteristic parameters, Types of Logic	
	Families TTL, ECL, CMOS Comparison between various logic families	
	Interfacing. between CMOS and TTL logic families	
Term Work:		
The term wor	k shall consist of record of minimum eight experiments.	
1. Imple	mentation of Boolean functions using logic gates.	
2. Study	of characteristics of typical 74 TTL / 74 CMOS family like: fan in, fan out	
standard l	oad, noise margin & interfacing with other families,	
3. Half, 1	Full Adder and Subtractor using gates and IC's.	
4. Code	conversion using digital IC's.	
5. To im	plement 1-bit and 2-bit comparator using gates and IC's.	
6. Functi	on implementation using Multiplexer and Demultiplexer.	
7. BCD	Adder/Subtractor using IC7483.	
8. Study	of counters:Ripple,Synchronous,Ring,Johnson using IC's.	
9. Study	of counters: Up-down counter Decade counter and Mod-16 counter.	
10. Study	of shift registers : Shift left , Shift right , parallel loading	
Project Base	d Learning: Thestudents are expected to perform a project (in a group) based	d on the
course and pr	epare a report for the same. The report should be as per standard guidelines.	
Text Books:		
1. R.P. J	ain, "Modern digital electronics", 3rdedition, 12th reprint TMH Publication,	2007
2. Ananc	l Kumar 'Fundamentals of Digital Circuits' PHI	

3.	Morris Mano	'Digital l	Design'	(Third Edition)	,.PHI
----	-------------	------------	---------	-----------------	-------

- J.F.Wakerly "Digital Design: Principles and Practices", 3rd edition, 4th reprint, Pearson Education, 2004.
- A.P. Malvino, D.P. Leach 'Digital Principles & Applications'' –Vith Edition-Tata McGraw Hill, Publication
- 3. Thomas L Floyd & R.P Jain, "Digital Fundamentals" (Eight editions), Pearson

Bharati Vidyapeeth (Deemed To Be University) College of Engineering,Pune

В	. Tech. (Electronics & Communication Engineering) S	em-III							
	ANALOG CIRCUITS AND APPLICATION	S							
TEACHING	EXAMINATION SCHEME: CH	REDITS ALLOT	FTED:						
SCHEVIE: Theory: 03 Hrs. / Week	End Semester Examination: 60 Marks Cr	edits: 03							
Practical: 02 Hrs. / Week	Internal Assessment: 40 Marks								
	TW: 25 Marks Cr	edit: 01							
	Practical: 25 Marks								
	Total: 150 Marks To	tal Credits: 04							
Course Pre-re	equisites:								
1	Flectronic components and devices								
Course Outco	mes: After successfully completing the course, the studen	nts will be able to): models						
1	Demonstrate BJ1 single stage amplifier, its hybrid equiv		models.						
2	Analyze multistage amplifiers using BJT.								
3	Analyze the importance of negative feedback in amplified	ers.	1 0						
4	Demonstrate and analyze power amplifier circuits operation.	in different m	odes of						
5	Design various oscillator circuits using BJT.								
6	Design and analyze transistorized series and shunt volta	ge regulators.							
			06 11						
UNII - I	Single stage Amplifiers	A	06 Hrs.						
	Classification of Amplifiers – Distortion in Amplified	rs, Analysis of Hybrid Model							
	Analysis of CE amplifier with and without Emitter Res	istance Square							
	wave testing	istance, Square							
UNIT – II	Multi Stage Amplifiers		06 Hrs.						
	Need of Multistage amplifiers, methods of coupling	g-RC coupling							
	Direct coupling and Transformer coupling, Miller's T	heorem and its							
	dual, Parameter evaluation such as Ri, Ro, Av, Ai &	Bandwidth for							
	general multi stage amplifier, Analysis of CE-CE cas	cade amplifier,							
	and cascode amplifier, various configurations t	echniques for							
	improving input impedance for CC stage (Darlington co	improving input impedance for CC stage (Darlington connection, boot							

	strapping), Analysis of Darlington amplifier.				
UNIT - III	Feedback Amplifiers	06 Hrs.			
	Concept of feedback, classification of amplifiers, Negative feedback				
	topologies with their block diagram representation, Effect of negative				
	feedback on Input impedance, Output impedance, Gain and Bandwidth				
	with derivation, method of analysis of feedback amplifier, analysis of				
	all feedback topologies.	0.6 77			
UNIT -IV	Power Amplifiers	06 Hrs.			
	Classification of power amplifiers - Class A, Class B, Class C, and Class AB. Operation of - Class A with resistive load, Transformer coupled class A Amplifier; Class B Push – pull amplifier, Class B Complementary symmetry amplifier. Efficiency analysis for Class A amplifier and Class B amplifier, cross over distortion in power amplifiers, Class AB Complementary symmetry amplifier, harmonic analysis				
UNIT -V	Oscillators	06 Hrs.			
	Positive feedback, Barkhausen criterion, Classification of oscillators,				
	derivation and analysis of RC oscillators, Wien bridge Oscillators, LC				
	Oscillators for frequency of oscillation, Piezo-electric effect in crystals				
	and Crystal Oscillator	0 (I I			
UNII -VI	Regulator	06 Hrs.			
	Block schematic of linear regulators, Performance parameters –Output resistance, Voltage and temperature stability factor. Ripple rejection				
	Load and Line regulations Emitter follower regulator Transistor				
	series regulator, shunt regulator Study and design of regulators using				
	IC's:78XX,79XX, LM317, LM2596, LM 337 Negative Regulator,				
	Method of boosting output current using external series pass transistor.				
	Protection circuits - Reverse polarity protection, over circuit, fold				
	back current limiting, over voltage protection.				
Project Based	Learning: The students are expected to perform a project (in a group) ba	sed on			
the course and	prepare a report for the same. The report should be as per standard guidel	ines.			
The form work:	shall consist of record of minimum eight our enimoute				
	is a figure stage emplifier verification with theoretical values of A.	D. D.			
1. Analys	is of single stage amplifier, vertication with theoretical values of A_i , A	$\mathbf{X}_{v}, \mathbf{K}_{i}, \mathbf{K}_{o}$			
2 Analys	is of multistage LE amplifier, verification with theoretical values of $\Lambda \in \mathcal{A}$				
and fin	2. Analysis of multistage LF amplifier, verification with theoretical values of A _i , A _v , K _i , K _o and find the bandwidth square wave testing				
3. Input impedance improvement technique for emitter follower.					
4. Analysis of LF amplifier with negative feedback in voltage series topology.					
5. Analysis of LF amplifier with negative feedback in current series topology.					
6. Analys	is of LF amplifier with negative feedback in voltage shunt topology.				
7. Analys	is of LF amplifier with negative feedback in current shunt topology.				
8. Measurement of frequency of oscillations of RC Oscillators - phase shift and wien bridge					

9. Measurement of frequency of oscillations of LC oscillators – Hartley, Colp

- 10. Biasing analysis of BJT power amplifier in class A, B, C.
- 11. Regulation characteristic of series and shunt regulators and calculation of S_v and R_o .

Text Books:

- 1. Electronic devices and circuits by S. Salivahanan, Suresh Kumar Vallavaraj, of Mc Graw Hill Publication
- 2. Robert Boylestad, Electronic Devices and Circuit Theory, Pearson Publication

- 1. Electronic Devices and Circuits by Allen Mottershed- PHI Publication
- 2. Electronic Devices and Circuits by J.B. Gupta

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune								
	B. Tech. (Electronics & Communication Engineering) Sem III							
			DATA STRUCTURES					
TEA	CHIN	G SCHEME:	EXAMINATION SCHEME: CREDITS ALI	OTTED:				
Theory: 03 Hrs. / Week			End Semester Examination: 60Credits: 03Marks					
			Internal Assessment: 40 Marks Total Credits :)3				
			Total:100 Marks					
Cou	rse Pre	-requisites:						
The	students	s should have basic	knowledge of					
1	Comp	uter Programming I						
Cou	rse Out	tcomes: After succe	essfully completing the course, the students will be able to:					
1	Studen	t will be able to ch	noose appropriate data structure as applied to specified pr	oblem				
2	Under	stand basic data stru	actures such as arrays strings, and linked lists					
3	Apply	the different linear	data structures like stack and queue to problem solutions					
4	Interpr	et concepts of gran	hs and trees					
5	Studer	t will be able to 1	handle operations like searching, insertion, deletion, trax	ersing				
•	mecha	nism etc. on various	s data structures.					
6	Studen	ts will be able to w	rite the programs using data structures in C.					
UNIT – I Introduction to Data Structures 06								
Introduction and D		Introduction and D	Definition of Data Structure, Classification of Data, Various					
		types of Data Structure, DS Operations, Static and Dynamic Memory						
		Allocation, Functi	on, Recursion.					
UNI	T – II	Arrays and Link	ed list	06Hrs.				
		Arrays: Introduction to Arrays, Definition, One Dimensional Array and						
		Multidimensional Arrays.						
		Linked Lists : Introduction, singly linked list implementation, insertion,						
		deletion and searching operations on linear list, circularly linked lists-						
		Applications: Poly	Dependions for Circularly linked lists, doubly linked list implementation,					
		Oueue using linke	d list					
UNI	T -III	Stack and Queue	u 1151.	04Hrs.				
0111		Stack: Introductio	n. Definition. Stack Operations. Applications: Infix to	0 111 50				
		Postfix Conversion	n, Evaluation of Postfix Expression.					
		Queues: Introduct	ion, Operations on queues, Circular queues, Priority					
		queues, Applicatio	ons of Queue	0.077				
UNI	T -IV	Irees		08Hrs.				
		Definitions, tree re	epresentation, properties of trees, Binary tree, Binary tree					
		representation, bin	nary tree properties, binary tree traversals, binary tree					
LINI	TV	Craphs	ppheanons of nees.	06Uma				
UN	1-V	Graphs		vonrs.				

	Representation Of Graphs, Elementary Graph operations (Breadth First					
	Search, Depth First Search, Spanning Trees, Shortest path, Minimal spanning					
	tree).					
UNIT -VI	Searching and Sorting	06Hrs.				
	Searching: Introduction, Linear search, Binary search, Fibonacci search.					
	Sorting: Introduction, Selection sort, Bubble sort, Insertion sort, Merge sort,					
	Quick sort, Heap Sort.					
Project Bas	ed Learning: The students are expected to perform a project (in a group) base	d on				
the course a	nd prepare a report for the same. The report should be as per standard guidelines	•				
Text Books						
1. Fundame	ntals of Data structures in C, 2nd Edition, E.Horowitz, S.Sahni and Susan Ander	son				
Freed, Univ	ersities Press.					
2.Data struc	tures A Programming Approach with C, D.S.Kushwaha and A.K.Misra, PHI.					
3. G.A.V PA	AI, Data Structures and Algorithms, Concepts, Techniques and Applications, Vol	lume1,				
1stEdition,	Fata McGraw-Hill, 2008.					
4. Richard F	C. Gilberg& Behrouz A. Forouzan, Data Structures, Pseudo code Approach with	C,				
2ndEdition,	Cengage Learning India Edition, 2007.					
5. Reema T	nareja, "Data Structures Using C", Oxford Universities Press 2014, 2nd Edition.					
Reference I	Books:					
1. Data	structures: A Pseudo code Approach with C, 2nd edition, R.F.Gilberg And					
B.A.Forouzan, Cengage Learning.						
2. Data	structures and Algorithm Analysis in C, 2nd edition, M.A.Weiss, Pearson.					
3. Data	3. Data Structures using C, A.M.Tanenbaum, Y. Langsam, M.J.Augenstein, Pearson.					
4. Data	4. Data structures and Program Design in C, 2nd edition, R.Kruse, C.L.Tondo and					
B.Le	eung,Pearson					
•						

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune							
	B. Tech. (Electronics & Communication Engineering) Sem III							
	ELECT	RONICS INSTRUMENT & MEASU	REMENT					
<u>TEAC</u>	CHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:					
Prac	tical: 02 Hrs/week	TW: 25 Marks						
		ORAL: 25 Marks	Credit: 01					
		Total: 50 Marks	Total Credits: 01					
Cours	e Pre-requisites.							
The st	udents should have kn	owledge of						
1	Electronic Compo	nent and Devices						
		nent und Devices						
Cours	e Outcomes: After le	arning this course students will be ab	le to					
1	Measure of True R	R.M.S. and LCR values.						
2	Use the Digital sto	prage oscilloscope for electronic circuit a	applications.					
3	Intrepret the perfor	rmance characteristics of transistor usin	g curve tracer.					
4	Analyse the signal	s using spectrum analyser.	9					
5	Analyse the digita	l signals using logic analyser.						
Term	Work:							
The te	rm work shall consist	of record of eight experiments						
1.	Peak, average and R.	M.S. value of signal measurement using	g True RMS meter.					
2.	Measurements of pas	sive components on L-C-R Q meter.						
3.	Measurements on DS	50:						
	i) Observation &	& measurement of different signals.						
	ii) Storing and re	etrieving number of different signals.						
4.	Measurements with U	Universal counter (Frequency, Period, fr	equency ratio, Period					
	Averaging and Time	interval).						
5.	Study of characterist	ics of Diode, Transistors using Curve Tr	acer.					
6.	Measurement of total	harmonic distortion using Distortion Fa	actor Meter.					
7.	Measurement and a	analysis of signals using Logic Analyzer						
8.	Measurement using S	Spectrum Analyser. Observing spectrum	of AM and FM waveforms for					
	different modulation	indices.						
Textb	ook:							
1.	Oliver-Cage, "Electi	ronic Measurements and Instrumentation	n", TATA McGraw Hill, 1975.					
2. Albert D. Helfrick and William D. Cooper, "Modern Electronic Instrumentation and Measurement Techniques", Prentice Hall of India, 2010.								
Refer	Reference Books:							
1.	H. S. Kalsi, "Digital	Instrumentation", Tata McGraw Hill						
2.	Clyde F. Coombs "E	lectronic Instrumentation Handbook" M	cGraw Hill					
3.	Cooper Helfric, "Ele	ctronic Instrumentation & Measurement	Techniques", Prentice Hall					
	Publication.							

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune					
		B. Tech. (Elect	ronics & Communication Engineering)	Sem III	
		Ι	ntroduction to Arduino Framework		
TEA	CHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLO	FTED:
Theory: 02 Hrs. / Week			End Semester Examination: -	Credits: 02	
			Internal Assessment: 100 Marks	Total Credits :02	
			Total:100 Marks		
Cou	rse Pre	-requisites:			
The	student	s should have basic	knowledge of		
1	Comp	uter Programming I			
	rse Out	tcomes: After succe	essfully completing the course, the student	ts will be able to:	
I	Under	rstand the basic prin	iciples of electronics and programming.		
2	Explai Things	n the role and signi s) landscape.	ficance of Arduino in the maker commun	ity and IoT (Interne	t of
3	Navig	ate the Arduino ID	DE (Integrated Development Environmen	t) and utilize its ba	asic
4	Write	simple Arduino ske	tches (programs) to control hardware con	popents such as LE	Ds.
-	motors	s, sensors, etc.			23,
5	Design	n and implement ba	sic circuits using Arduino boards.		
6	Troub	leshoot common iss	ues encountered during Arduino projects.		
7	Demo	nstrate proficiency i	in creating at least three practical Arduino	projects.	
8	Exhibi	t confidence in a	exploring and experimenting with Arc	luino for personal	or
	profes	sional projects.			
UNI	T – I	Introduction to A	Arduino Framework		5 Hrs
		-Overview of Ard	uino: History, features, and applications.		
		- Understanding tr	ie Arduino ecosystem: Boards, shields, se	nsors, actuators,	
		- Introduction to the	ne Arduino IDF		
UNI	T – II	Electronics Fund	amentals		5 Hrs
		- Basic concepts o	f electricity: Voltage, current, resistance.		
		- Understanding C	Dhm's law.		
		- Introduction to e	lectronic components: Resistors, capacito	rs, LEDs, etc.	
UNI	T -III	Programming Ba	isics		5 Hrs
		- Introduction to p	rogramming concepts: Variables, data typ	es, control	
		structures.			
- Basics of C/C+-			- programming language.		
LINI	T_IV	- writing your firs	a Input/Output		5 Hrs
	1 -1 V	- Digital vs analo	a signals		51115
		- Using digital ni	is for input and output.		
		- Analog input/out	tput with Arduino.		

UNIT -V	Sensors and Actuators	5 Hrs				
	- Introduction to various sensors: Light, temperature, motion, etc.					
	- Controlling actuators: Servo motors, DC motors, LEDs, etc.					
	- Interfacing sensors and actuators with Arduino.					
UNIT -VI	Communication Protocols	5 Hrs				
	- Introduction to serial communication.					
	- Basics of I2C and SPI protocols.					
	- Interfacing with external devices using communication protocols.					
Assessmen	t: Assessment will be based on:					
- Participati	on in theory and practical sessions.					
- Completio	n and demonstration of practical projects.					
- Understand	ding demonstrated through quizzes or small assignments.					
- Overall en	gagement and willingness to learn throughout the course.					
Reference I	Books:					
1) A Beginn	er's Guide to Arduino Programming, George Gibson, Rivercat Books LLC, 2023	3				
2)Essentials	of Arduino TM Boards Programming-Step-by-Step Guide to Master Arduino Boa	rds				
Hardware and Software, Farzin Asadi, Apress Media LLC, 2023						
3)Programming Arduino® Getting Started with Sketches, Simon Monk, McGraw Hill, Third						
Edition, 2023						
4)A Hands-	On Course in Sensors Using the Arduino and Raspberry Pi, Volker Ziemann, CR	C				
Press, 2023						

1	Program]	B. Tech	Sen	n-IV]	NEP (CBCS	2023 Co	ourse			
Sr	Catagory	Subje	Subject	Teaching Scheme		Examination Scheme (Marks) Credits						-				
No	Category	ct Code	Subject	L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total
1.	Department Core Course		Electromagnetic Waves & Propagation	3	-	1	60	40	-	-	-	100	3	-	1	4
2.	Department Core Course		Digital Communication	3	2	-	60	40	25	-	25	150	3	1	-	4
3.	Department Core Course		Embedded Systems	3	2	-	60	40	25	-	25	150	3	1	ŀ	4
4.	Department Application Course		Integrated Circuits & Applications	3	2	-	60	40	25	25	-	150	3	1	-	4
5.	Interdisciplina ry Course		Database Management System	3	-	-	60	40	-	-	-	100	3	-	-	3
6.	Skill based Course -IV		Java programming	-	2	-	-	-	25	-	25	50	-	1	-	1
				15	08	1	300	200	100	25	75	700	15	4	1	20
	Indian Knowledge System*		2	-	-	-	100	-	-	I	100	1	I	1	2	
	Social Activity*			-		_		-	-	_	-	-	-	-	-	2

B. Tech. (Electronics and Communication): Sem-IV (NEP CBCS 2023 COURSE)

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune					
	B. Tech. S	Sem-IV Electronics & Communication Engine	eering			
	Electro	magnetic Waves & Propagation	n			
TEA	ACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:			
The	ory: 03 Hrs. / Week	End Semester Examination: 60 Marks	Credits: 03			
Tute	orial: 01 Hrs/week	Internal Assessment: 40 Marks	Credit: 01			
		Total:100 Marks	Total Credits :04			
Cou	rse Pre-requisites:					
The	students should have basi	c knowledge of				
1.	Vector calculus and coor	dinate systems.				
2.	Curl, Divergence and Gr	adient.				
3.	Partial differential equation	ons.				
Cou	rse Objectives:					
	Provide fundame	ntals of Static Electromagnetic Fields.				
	 Explain basics of 	the vector Differential, Integral operators to	Electromagnetic theory &			
	Electrostatic & E	lectromagnetic fields.				
	• Define and derive	e different laws in Electrostatic & Electroma	gnetic fields.			
	 Explain Maxwell 	's equations and concepts of transmission lin	nes.			
	 Analyze techniqu 	es for formulating and solving problems in l	Electrostatic &			
	Electromagnetic	fields.				
	Develop mathem	atical skills related with differential, integral	and vector calculus.			
Cou	rse Outcomes: After lear	ning this course students will be able to				
1	Apply fundamental conc electric potential, and po	epts of static electric fields, including Coulor larization in dielectrics, to analyze and solv	mb's law, Gauss's law, ve problems involving			
	electric field distribution	s and boundary conditions.	······································			
2	Analyze static magnetic	houndary conditions in order to we have	ital law, magnetic flux			
	distributions and their on	plications in magnetic materials	stand magnetic neid			
3	Demonstrate comprehen	pheatons in magnetic matchais.	luations			
<u> </u>	A nnly wave propagation	principles to analyze and solve problems re-	lated to uniform plane			
-	waves, including wave	equations, propagation through different m	nediums, polarization			
	reflection, and transmiss	ion of plane wayes, to understand the behav	ior of electromagnetic			
	waves in different enviro	nments.				
5	Analyze parameters of tr	ansmission lines, including transmission line	e equations, reflection			
-	coefficient, VSWR. ar	id transient analysis, to understand the	characteristics and			
	performance of transmiss	sion lines and their applications in communic	cation systems.			
6	Apply principles of wav	eguides and antenna fundamentals, includin	g waveguide analysis,			
	antenna specifications, ra	adiation principles, antenna arrays, and rada	r equations, to design			
	and analyze basic antenna systems and understand their role in wireless communication					

UNIT – I	Static Electric Fields	06 Hrs.				
	Review of Co-ordinate systems, Coulomb's law, line, Surface & Volume					
	Charge distribution. Electric Field Intensity, Electric Field due to infinite					
	line and surface charges, Electric Flux Density, Gauss law (differential and					
	integral form) and its applications, Divergence Theorem, Electric Potential					
	and gradient, Poisson's and Laplace Equations, Work done, Energy					
	Density, Electric Dipole and moment. Polarization in Dielectrics,					
	Boundary conditions for Dielectric and Dielectric, boundary conditions for					
	Conductor and Dielectric, boundary conditions for Conductor and free					
	space.					
UNIT – II	Static Magnetic Fields	06 Hrs.				
	Biot - Savart law, Magnetic Field Intensity due to infinite and finite line.					
	Ampere's Circuital Law in integral and differential form, Applications of					
	Amperes Circuital law, Magnetic flux density, Stokes Theorem, vector					
	magnetic potential, Magnetic force, Magnetic Torque, moment and dipole,					
	nature of magnetic material, magnetization, Magnetic boundary					
	conditions.					
UNIT - III	Time Varying Fields & Maxwell's Equations	04 Hrs.				
	Faradays law of induced emf, displacement current, Maxwell's Equations					
	in point form & Integral form for various fields.					
UNIT -IV	Wave Propagation and Uniform Plane waves	08 Hrs.				
	Wave equations, wave propagation through free space, wave propagation					
	through dielectric, wave propagation through conductors- skin depth,					
	Poynting theorem, wave polarization, Reflection of plane wave from					
	conducting medium, perfect dielectric., reflection of plane waves at					
	normal incidence, reflection of plane waves at oblique incidence angles.					
UNIT -V	Transmission Lines	06 Hrs.				
	Physical Description of Transmission line propagation, Transmission Line					
	equations & their solutions in phasor form, transmission line parameters,					
	reflection coefficient, VSWR, smith chart (Numerical expected) and					
	applications, transient analysis of transmission lines.					
UNIT -VI	Waveguides & Antenna Fundamentals	06 Hrs.				
	Plane wave analysis of parallel-plate waveguide, rectangular waveguides,					
	TE and TM modes, wave impedance, wave velocities, attenuation in					
	waveguide, EMI/EMC concepts, basic radiation principles, antenna					
	specifications, antenna arrays, Effective Area and the Friis Equation, The					
	Radar Equation , Monopole Antenna, Loop Antenna, Slot Antenna,					
	Microstrip Antenna, Horn Antenna, reflector Antenna.					
<u>List of Tutori</u>	List of Tutorials:					
1. Find th	e Electric field intensity and electric flux density at a given point due to	following				
charge	charge distributions. (In all coordinate systems)					
• Point	Point charges					
• Line	charges (finite and infinite)					
• Surfa	ce charges (finite and infinite)					
• Mixe	d charges (Point charge, Line charge, Surface charge)					
(i one onarge, 2me onarge, 2 arta e onarge)						

2.	Application of Gauss's law
	• Given ρv (volume charge density) in a particular region, find \overline{D} (electric flux density) using
	Law at the given location.
	• Given ρS (surface charge density), find \overline{D} (electric flux density) using Gauss's Law at the
	given location.
	• Given \overline{D} (electric flux density), find total charge enclosed by the surface (Q), ρv (volume
	charge density) using Gauss's Law.(In all coordinate systems)
3.	Find the electrostatic fields (Tangential and Normal) at the boundary between,
	• Free space and dielectric medium
	• Free space and conductor
	Dielectric medium and conductor
	Two dielectric media.
4.	Find \overline{H} (Magnetic field intensity) and \overline{B} (Magnetic flux density) at a given point due to,
	• Infinitely long current carrying conductor
	Finite current carrying conductor
	Infinite conducting surface
	Finite conducting surface
	• Different current carrying configurations (i.e. thin conductor, surface all together)
5.	For the following current carrying configurations, find the \overline{H} (Magnetic field intensity) in a
	given region (or point) using Ampere's circuital law.
	Infinitely long current carrying conductor
	• Infinite cylindrical surfaces of different radii all centered at the same axis.
	• Spherical surfaces of different radii all centered at a given point.
6.	Given \overline{H} (or \overline{E}) and the region properties (like ε , μ , σ etc.), find \overline{B} , \overline{D} and \overline{E} (or \overline{H}) using
	Maxwell's equations. (In all coordinate systems).
7.	Find attenuation constant, propagation constant, intrinsic impedance, values of E/H for
	different mediums like free space, conductors, and dielectrics.
8.	Given the primary constants (R, L, G, C) along with the generator specifications and
	termination, find secondary constants (α , β , γ , Z0) and other parameters like Velocity,
	wavelength, received voltage, received power, reflection coefficient etc.
9.	Problems on Impedance matching and design of stub matching using Smith Chart.
10.	Find cut-off frequency or waveguide dimensions or phase velocity for rectangular
	waveguides.
11.	Perform antenna measurements on Antenna Test bench or design and simulate antenna in
	any simulation platform.
Text E	Books:
1	A. Murthi, "Electromagnetic fields", S. Chand.
2.]	Edminister J.A, "Electromagnetics", Tata McGraw-Hill.
Refere	ence Books:
1.	Hayt & Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill
2.	Matthew N.O. Sadiku, "Principles of Electromagnetics", 6 th edition, Oxford
3.	Kraus, Fleisch, "Electromagnetics with applications", 5th Edition, McGraw Hill.
4.	Jordan & Balmain, "Electromagnetic waves & radiating systems", 2nd edition, PHI.

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
	B. Tech. Electronics & Communication Engineering Sem-IV						
]	DIGITAL COMMUNICATION				
TEA	ACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:		
The	ory: 0	3 Hrs. / Week	End Semester Examination: 60 C Marks	Credits: 03			
PR :	: 2 Hrs./	Week	Internal Assessment: 40 Marks				
			TW: 25 Marks	C redit : 01			
			OR: 25 Marks				
			Total:150 Marks	Fotal Credits : 0	4		
Cou	rse Pre	-requisites:	1 1 1 0				
The	student	s should have basic	knowledge of				
1.	Signal	s & Systems					
2.	Introd	action to Electronic	s Communication				
0				·11.1 1.1 .			
	Irse Out	tcomes: After succe	essfully completing the course, the students	will be able to:			
1.	Apply	sampling theorem	to convert an analog signal into a discrete se	equence.			
2.	Descri	be Continuous wav	e modulation methods.				
3.	Compa	are the approaches the measure	used to generate and detect bandpass modul	ation techniques	5. di cita 1		
4.	comm	unication	sity of multiplexing and synchronization	for effective of	ingitai		
5.	Comp	are the error probab	ility for digital modulation schemes such as	BPSK, BFSK, C)PSK		
6 .	Explai	n the principle of s	pread spectrum communication, FHSS, and	DSSS Techniqu	les.		
				1			
UNI	[T -]	Basics of Digital	Communication	1' ', 1	06 Hrs.		
		Fundamentals of	Digital communication system, analog	g vs. digital			
		analysis) ideal sa	ampling Natural sampling Flat top samp	ling aliasing			
		effect and apertu	re effect. Nyquist criteria. Pulse Amplitud	le Modulation			
		(PAM), Pulse W	idth Modulation, Pulse Position Modulation	on, generation			
		and demodulation	l.				
UNI	(T - II	Digital transmiss	sion of analog signals		06 Hrs.		
		Quantization-Uni	form, Non-Uniform, Companding, A-Law,	μ Law, Pulse			
		code modulation	Delta Modulation, Adap	otive Delta			
		Modulation, Diffe	erential Pulse Code Modulation.				
UNI		Rand nass Modu	lation Techniques		06 Hrs		
	1 1 1	ASK, PSK FSK	Binary Phase shift keving. Differential Phase	e shift keving	50 111 3.		
		Differential enco	ded PSK, Quadrature PSK, M-ary PSK	X, Quadrature			

	Amplitude shift keying (QASK), Binary frequency shift keying, Minimum						
	diagram.						
UNIT - IV	Digital Transmission	06 Hrs.					
	Digital Multiplexing: Multiplexers and hierarchies, Data Multiplexers. Data formats and their spectra, synchronization: Bit Synchronization, Scramblers, Frame Synchronization Inter-symbol, Interference, Equalization.						
UNIT - V	Baseband Receivers	06 Hrs.					
	Base band signal receiver, Probability of error, Optimum filter, White noise- Matched filter, probability of error of matched filter, correlation, FSK, PSK, non-coherent detection of FSK, DPSK, QPSK, Calculation of error probability for BPSK &BFSK, Signal space to calculate Pe.						
UNIT - VI	Spread Spectrum Techniques	06 Hrs.					
	Introduction, Generation of PN Sequences and its properties, Direct Sequence Spread Spectrum Signals, Frequency Hopped Spread Spectrum Signals, Introduction to Multiple Access Techniques: CDMA, TDMA, FDMA. An overview of Mobile Communication, Introduction to 4G and 5G networks.						
Town Word							
Term work	X:						
The term we	ork shall consist of minimum eight experiments.						
1. Gene	erate the Sampled signal and observe the effect of variations in sampling freque	ency.					
2. Conv	vert of analog signal into PCM format and its study (PCM) System.						
3. Impl	ement Delta modulation system and interpret the modulated and demod	ulated					
4 Impl	ement Adaptive Delta modulation system and compare the modulated	d and					
demo	odulated waveforms.	u unu					
5. Stud	y of Amplitude Shift Keying (ASK) System and observe the waveforms.						
6. Stud	y of carrier Modulation techniques by phase shift keying method.						
7. Gene	erate FSK Modulation (Frequency Shift Keying) & Demodulate the FSK signate	als.					
8. Stud	8. Study of Quadrature Phase Shift Keying (QPSK) with waveforms.						
9. Simi	9. Simulate any digital modulation scheme using MATLAB.						
10. Generate Unipolar NRZ, Polar NRZ, Unipolar RZ and Polar RZ, Manchester and AMI line codes.							
	· · ·						
Project Based Learning : Students are expected to perform a project (in a group) based on the course and prepare a report for the same. The report should be as per the standard guidelines.							
Text books							

- B. Sklar, "Digital Communications: Fundamentals and Applications", Prentice Hall.
 B.P. Lathi and Z. Ding, "Modern Digital and Analog Communication Systems", Oxford University Press.

- 1. John G. Proakis, "Digital Communication", Pearson Education.
- 2. Leon W. Couch, "Digital and Analog Communication Systems", Pearson Education.
- 3. Haykin Simon, "Digital Communication Systems", John Wiley and Sons.

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
	B. Tech. (Electronics & Communication Engineering) Sem IV						
	EMBEDDED SYSTEMS						
TEA	CHING	SCHEME:	EXAMINATION SCHEME:	CREDITS			
The	ory: 03H	frs. / Week	End Semester Examination: 60 Marks	Credits :03			
Pra	ctical: 02	Hrs. / Week	Internal Assessment: 40 Marks				
			TW: 25Marks	Credit:01			
			ORAL:25 Marks				
			Total:150 Marks	Total Credits	:04		
Cou	rse Pre-re	equisites:					
The	students s	hould have basic	knowledge of				
	• D	igital Electronic	S				
Cou	rse Outco	mes: After succ	essfully completing the course, the students	will be able to:			
1.	Classify	the memory devi	ices, microcontrollers and their architecture.				
2.	Compreh	end the architect	ture and basic concepts of 8051 microcontro	ller.			
3.	Write th	ne programs fo	r 8051 microcontroller using arithmetic	, logical, bran	nching		
	instructio	ons.					
4.	Interface	peripheral devic	es with 8051 microcontroller for different ap	pplications.			
5.	Distingu	ish different type	es of serial & parallel communication protoco	ols.			
6.	Write the	e programs for 11	nterfacing of Arduino&Raspberry Pi with p	peripheral devic	ces for		
TINI	various a	pplications.	assess and Momany		06 IIma		
UNI	1 - 1	Comparison of	Microprocessor & Micro controller Differe	naa hatwaan			
		RISC & CISC 1	microcontrollers Harvard & Von Neumann				
		Architectures 8/16-bit microcontrollers, General-nurnose processors					
		single-purpose processors, application specific processors.					
		Memory and I/	O devices, processor and memory selection	for an			
		embedded syste	em, interfacing processor, I/O mapped I/O,N	lemory			
		mapped I/O.					
UNI	T - II	Architecture o	of 8051 Microcontroller		06 Hrs		
		Selection criter	ia for microcontrollers, variants of MCS-51	family and			
		their features. A	Applications of microcontrollers. Architectur	re of 8051 and			
		its pin details.	PC, DPTR, A & B registers, PSW register-fl	ag bits,			
		Memory organi	ization, register banks, 8051 timers, counter	and related			
LINI		SFK S 8051 Instruction	ons and Serial Communication		16Hrs		
	1 -111	Addressing Mo	oles Immediate Register Direct Indirect I	ndexed	001115		
		Relative and hi	t addressing. Instruction set Data Transfer	Arithmetic			
		Logical. Branch	hing, and Machine Control. Looping				
		Serial Commun	nication of 8051, Basics, SBUF register. SCO	ON and			
		PCON registers	s, Modes of operation				

UNIT - IV	8051 I/O ports & Interfacing to 8051	06 Hrs				
	Features of I/O ports. I/O, bit addressability and configuring I/O ports,					
	interface I/O devices such as buzzer, relay, example programs with					
	assembly & C. Different types of interrupts, IE and IP registers.					
	Interfacing of 8051 with devices: LED, LCD, keyboard, LM35					
	temperature sensor & A/D converter					
UNIT - V	Communication Protocols	06 Hrs				
	Use of communication protocols, need of communication Serial					
	communication protocols: I2C, CAN, USB, UART, Serial peripheral					
	interface (SPI), synchronous serial protocol (SSP). Parallel					
	communication protocol: PCI, PCI-X RS232C, RS485/422.					
UNIT - VI	Interfacing to the real world	06 Hrs				
	Arduino: Introduction to Arduino UNO, Pin configuration and					
	architecture, Concept of digital and analog ports, Introduction to					
	Embedded C and Arduino platform					
	Raspberry Pi – Introduction-Basics, Specifications, Basic Architecture,					
	Raspberry Pi GPIO, Raspberry Pi pin configuration, Interfacing to LED,					
	buzzer, and potentiometer & temperature sensor, Applications.					
Term Work:						
The term work	shall consist of record of minimum eight experiments.					
1.Addition	/ subtraction / multiplication / division of 8/16 bit data using 8051					
2.Largest/s	mallest from a series using 8051.					
3.Generate	different waveforms: Sine, Square, Triangular, Ramp using DAC interface.					
4. To writ	e an ALP for arranging numbers in ascending/descending order stored i	n external				
memory lo	cation.					
5. To write	a C program to demonstrate LED using 8051 Micro-controller developmen	it kit.				
6.To write	e a C program to demonstrate Seven Segment using 8051 Micro-con	troller				
developme	nt kit					
7.To write	a program to demonstrate LCD using 8051 Micro-controller development k	it.				
8.Interfacii	ng of LED to Arduino/ Rasberry pi.					
9Interfaci	ng of Buzzer to Arduino/ Rasberry pi.					
10.Interfac	10.Interfacing of Potentiometer to Arduino/ Rasberry pi.					
11. Interfac	11. Interfacing of Temperature sensor to Arduino/ Rasberry pi.					
12. To tran	smit and receive the data using any protocol.					
Project based	learning: The students are expected to perform a project (in a group) based	l on the				
course and prepare a report for the same. The report should be as per standard guidelines.						
Text Books:						
1. Muhan	1. Muhammad Ali Mazidi, Janice Gillespie Mazidi, "The 8051 Microcontroller and					
Embedded System" Pearson Education.						
2. Dhananjay Gadre, "Programming and Customizing the AVR Microcontroller",						
McGraw Hill Education						
Reference Bo	Reference Books:					
1. Kenneth J. Ayala, "The 8051 Micro-controller – Architecture, Programming &						
Application	ns", Second Edition Penram International & Thomson Asia					

2.	Rajkamal, "Embedded System-Architecture, Programming and Design", TMF	ł
Pul	ications, Edition 2003	

 Muhammad Ali Mazidi, Sarmad Naimi and Sepehr Naimi, "The AVR Microcontroller and Embedded Systems Using Assembly and C", Pearson Education

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
		B. Tech. Sen	n-IV Electronics & Communication Eng	gineering		
		DA	ATABASE MANAGEMENT SYSTEM			
TEA	CHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLC	OTTED:	
The	ory: 0	3 Hrs. / Week	End Semester Examination: 60 Marks	Credits: 03		
			Internal Assessment: 40 Marks	Total Credits : 03		
			Total:100 Marks			
Cou	rse Pre	-requisites:				
The	student	should have basic k	knowledge of			
1	l. Data	structures and				
2	2. Com	puter programming	g I.			
Cou	rse Out	tcomes: After learn	ing this course students will be able to			
1	Identif	fy the characteristic	cs of database and describe the architec	ture and language	es of	
	Databa	ase system.				
2	Identif	ty the elements used	I in Entity Relationship diagram and sketc	h a simple diagram	l.	
3	Summ	arize relational mod	del concept and illustrate the relational cor	istraints.		
4	Descri	be Structured Quer	y Language (SQL)and apply to query a da	tabase.		
5	Write	SQL code using op	erators and Inbuilt functions for given data	abase.		
	Apply	Joins to database an	nd also create procedures and views accord	ding to conditions.	06 H	
UNI	1 – 1	Introduction to L	Database Management System		06 Hrs.	
		Concept of Data, I	Database, DBIMS, Advantages of DBMS of Stration of DBMS D	over file		
		Data independence	e Database users. Over all structure of DE	ana abstraction,		
TINI	ти	Data Independence Data Modolling	e, Database users, over all structure of DE	DIVIS.	06Hrs	
	1 - 11	The importance of	f data models. Record based logical model	- Relational	001115.	
Network Hierorchical		nical	- Relational,			
		Data modelling using the E-R model: Entity types entity set keys Entity				
		relationship model. Strong entity set. Weak entity set. Types of attributes				
		and E-R diagram.	-,			
UNI	T -III	Relational Data N	Model		06Hrs.	
Fundamentals of RDBMS- Records, Fields, data types, tables and database						
Concept of RDBMS, E.F. Codd's Rule for		IS, E.F. Codd's Rule for RDBMS, Key Co	oncept-			
		Candidate Key, Pr	Candidate Key, Primary Key, Foreign Key			
	Normalization- Concept, Need of Normalization, Types: 1NF, 2NF, 3NF.					
UNI	T-IV	Structured Quer	y Language		06Hrs.	
Introduction to SQL, Data types		Introduction to SQ	L, Data types in SQL, Components of SQ	L, Data integrity		
		constraints, SQL (Commands :DDL(Create, Drop, Alter, Tru	incate, Rename),		
	DML(Insert, Update, Delete), DCL(commit, Savepoint, Rollback, Grant					
T 7 T 7 T		,Kevoke), DQL(Se	elect).		0.011	
UNI	1 -V	Interactive and A	Advance SQL I		06Hrs.	

	SQL Operators: Arithmetic, Comparison, Logical, Set and Range searching		
	operators		
	Inbuilt Functions: String and Arithmetic, Date and time, Aggregate		
	functions: min, max, count, average, sum, nested sub-queries, group by,		
	having, order by.		
UNIT -VI	Interactive and Advance SQL II	06Hrs.	
	Join operations - inner, left join, right join, natural join and Cartesian		
	product.		
	Views: Concept of view, Create view, Updating views, Dropping views		
	Sequences: Creating sequences, Altering sequences, Dropping sequences		
	Indexes: Index types, Creating indexes, Dropping indexes.		
Project Ba	sed Learning:		
The studer	ts are expected to perform a project (in a group) based on the course and prepa	are a	
report for t	he same. The report should be as per standard guidelines.		
Text/Refe	ence books		
1. Eln	1. Elmsasri, R., & Navathe, S. Fundamentals of Database Systems. 7th edition. Pearson		
Edu	ication.		
2. Co	mally T, Begg C., "Database Systems", Pearson Education, ISBN 81		
3. Bay	ross, I. SQL, Pl/SQL the Programming Language of Oracle. 4 th edition. BPB		
Pul	plications.		
4. Sill	4. Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill		
Puł	lishers, ISBN		
5. Sill	perschatz, A., Korth, H. F., & Sudarshan, S. (2011), Database System Concepts. 6	oth	
edi	ion. Tata McGraw-Hill Education.		
Suggested	software/ Learning Websites		
1. ww	w.tutorialpoint.com		
2. wie	lyindia.com or dreamtechpress.com		

Bharati Vidyapeeth (Deemed to be University)				
	College of Engineering, Pune			
B. Tech. S	em-IV Electronics & Communication Eng	gineering		
	JAVA PROGRAMMING			
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Practical: 02 Hrs. / Week	End Semester Examination:			
	Internal Assessment:			
	TW: 25 Marks	Credit:01		
	PRACTICAL: 25 Marks			
	Total: 50 Marks	Total Credits :01		
Course Pre-requisites:				
The students should have basic	knowledge of			
1. Computer Programming-	[
2. Computer Programming-	Ι			
Course Outcomes: After learn	ing this course students will be able to			
1. Apply basic knowledge of	f object oriented programming concepts	to solve given problem.		
2. Implement concept of arr	ays, static variables and static methods in	n Java programs.		
3. Develop Java programs u	Develop Java programs using abstract classes and understand use of String and String Buffer			
classes.				
4. Develop reusable program	ns using the concepts of inheritance, poly	morphism, interfaces and		
packages.				
5. Apply the concepts of Mu	lltithreading and Exception handling to d	evelop efficient and error		
free codes.				
Term Work:				
The term work shall consist of	record of minimum eight experiments.			
1. Write a Java Program to	b demonstrate the use of OOP features.	1:00		
2. Write a Java Program to	o display pattern (Triangle, Pyramid) usi	ng different loops.		
3. Write a Java Program u	sing Array.	-41 - 1 1 - 4 - 4 - 1 1 1-		
4. Java program to demon	strate example of static variable, static m	lethod and static block.		
5. Implementation of diffe	erent String functions by using switch case	se.		
6. Write a Java program to understand the use of String buffer class.				
/. Write a Java program to differentiate between method overloading and method overriding.				
 o. write a Java Frogram to implement multiple inheritances by using Interface Q. Write a Java Program to implement multiple inheritances by using Interface 				
10. Write a Java program to implement the concept of Package				
11. Write a Java program to implement the concept of Exception Handling				
12 Write a program to implement multithreading				
Text Books:				

1.	"Programming with Java: A Primer", E Balagurusamy, Tata McGraw Hill Publishing			
	Company.			
2.	"Java: The Complete Reference", Herbert Schildt, McGraw Hill Publishing Company			
Refer	Reference Books:			
1.	"Understanding OOP with Java", T. Budd, Pearson Education			
2.	"Java: How to Program" by Deitel and Deitel			
3.	"Core Java Volume 1", Cay Horstmann, Kindle			

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

B. Tech. Sem. IV: Electronics & Telecommunication Engineering						
SUBJECT: - Indian Knowledge System						
TEACHING		J	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
SCHEME:		- / 1				
Theo	ory:02 H	lrs/week	End Semester Examination:			
Prac Tuto	rial: 00)	Internal Assessment: 100 Marks	Credits: 02		
1 4 10	11a1 . 00		Totale 100 Marka			
0			Total: 100 Marks	Total Credits: 02	2	
	rse Obje	ectives:	in the students shout Indian sultan	and airrilination in	1	
1.		To sensit Knowled	ge System and Tradition.	and civilization ind	cluding its	
2.		To help s	tudent to understand the knowledge,	art and creative pr	actices,	
		skills, an	d values in ancient Indian system	1 .		
3.		To help t	o study the enriched scientific Indian	heritage.		
4.		To introd modern s	luce the contribution from Ancient In cience & Technology	idian system & trac	lition to	
Cou	rse Outo	comes: A	After learning this course students	will be able to un	derstand	
1	Conce	pts of India	an Knowledge System			
2	India's	contributi	on in Philosophy and Literature			
3	India's	involvem	ent in Mathematics and Astronomy			
4	India's	role in M	edicine and Yoga			
5	India's	influence	in Sahitya			
6	Conce	pts of India	an Shastra			
UNI	T – I	Introduc	uction to Indian Knowledge System		04 Hours	
		Definition, Concept and Scope of IKS, IKS based approaches on Knowledge Paradigm, IKS in ancient India and in modern				
		India				
UNI	T – II	I Philosophy and Literature		04 Hours		
		Contribu	tions by Maharishi Vyas, Manu, Kan	ad, Pingala,		
		Parasar, I	Banabhatta, Nagarjuna and Panini in	Philosophy and		
UNIT - III		Literature Mathematics and Astronomy			04 Hours	
		Contribution of Aryabhatta, Mahayiracharya, Bodhayan,		04 110013		
		Bhashkar	acharya,	j ,		
		Varaham	ihira and Brahmgupta in M	athematics and		
		Astrononmy			0.4.11	
UNÍ	1 [°] -1V	Medicin	e and Yoga		04 Hours	
		Major contributions of Charak, Susruta, Maharishi Patanjali and				
			an in moutome and 1 ogu			

UNIT -V	Sahitya	04 Hours
	Introduction to Vedas, Upvedas, Upavedas (Ayurveda,	
	Dhanurveda, Gandharvaveda)	
	Puran and Upnishad) and shad darshan (Vedanta,	
	Nyaya.Vaisheshik, Sankhya, Mimamsa,	
	Yoga, Adhyatma and Meditation)	
UNIT -VI	Shastra	04 Hours
	Introduction to Nyaya, vyakarana, Krishi, Shilp, Vastu, Natya	
	and Sangeet	

Reference Books

1.Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru

2. Kapur K and Singh A.K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.

The Cultural Heritage of India. Vol.I. Kolkata:Ramakrishna Mission Publication, 1972.
 Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.

5. Dr. R. C. Majumdar, H. C. Raychaudhuri and Kalikinkar Datta: An Advanced History of India (Second Edition) published by Macmillan & Co., Limited, London, 1953.

6. Rao, N. 1970. The Four Values in Indian Philosophy and Culture. Mysore: University of Mysore.

7. Avari, B. 2016. India: The Ancient Past: A History of the Indian Subcontinent from c. 7000 BCE to CE 1200. London: Routledge.

8. Textbook on The Knowledge System of Bhārata by Bhag Chand Chauhan,

9. Histrory of Science in India Volume-1, Part-I, Part-II, Volume VIII, by Sibaji Raha, et al. National Academy of Sciences, India and The Ramkrishan Mission Institute of Culture, Kolkata (2014).

10. Pride of India- A Glimpse of India's Scientific Heritage edited by Pradeep Kohle et al. Samskrit Bharati (2006).

12. Vedic Physics by Keshav Dev Verma, Motilal Banarsidass Publishers (2012).

13. India's Glorious Scientific Tradition by Suresh Soni, Ocean Books Pvt. Ltd. (2010).

14.Kapoor, Kapil, Avadesh Kr. Singh (eds.) Indian Knowledge Systems (Two Vols), IIAS, Shimla, 2005