

Bharati Vidyapeeth

(Deemed to be University)

Pune, India

College of Engineering, Pune

B. Tech. Chemical Curriculum (2023 Course)

VISION OF UNIVERSITY

Social transformation through dynamic education

MISSION OF UNIVERSITY

(i) To make available quality education in different areas of knowledge to the students as per their choice and inclination

(ii) To offer education to the students in a conducive ambience created by enriched infrastructure and academic facilities in its campuses.

(iii) To bring education within the reach of rural, tribal and girl students by providing them substantive fee concessions and subsidized hostel and mess facilities

(iv) To make available quality education to the students of rural, tribal and other deprived sections of the population

VISION OF THE INSTITUTE

To be world class institute for social transformation through dynamic education.

MISSION OF THE INSTITUTE

(i) To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession and society.

(ii) To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.

(iii) To practice and promote professional ethics, transparency and accountability for social community, economic and environmental conditions.

VISION OF THE DEPARTMENT

To be globally recognized Chemical Engineering department for academic excellence and research.

MISSION OF THE DEPARTMENT

(i) To impart quality Chemical Engineering education to provide professionally competent engineers.

(ii) To develop conducive research environment to meet ever-changing aspirations of chemical and allied fields.

(iii) To promote entrepreneurship and leadership qualities with a strong foundation of social and professional ethics.

PROGRAM EDUCATIONAL OBJECTIVES

(i) Practice Chemical Engineering in conventional, multidisciplinary and emerging fields

(ii) Pursue advanced studies or other forms of continuing education

(iii) Demonstrate professionalism, ethical and social responsibility and desire for lifelong learning

PROGRAM OUTCOMES

(i) Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

(ii) Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

(iii) Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

(iv) Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

(v) Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

(vi) The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

(vii) Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

(viii) Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

(ix) Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

(x) Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

(xi) Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

(xii) Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

(i) Utilize the fundamentals of unit operations and unit processes for the design and development of chemical products

(ii) Implement the pollution abatement methodologies in chemical and allied industries

(iii) Adopt sustainable energy strategies in professional practice

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune Faculty of Engineering and Technology Department of Chemical Engineering B. Tech. (Chemical) Curriculum Structure (2023 Course): Semester III and IV

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY)

COLLEGE OF ENGINEERING, PUNE

B. Tech. (Chemical): Semester –III (2023 COURSE)

Sr. No	Cotogowy	Course	Course	Te So	achiı hem	ng e	J	Examin	ation S	cheme	(Mark	s)		Cr	edits	
51. NU	Category	Code	Course	L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total
1	MJ	MJ1101301	Chemical Engineering Thermodynamics- I	3	-	1	60	40	-	-	-	100	3	-	1	4
2	MJ	MJ1101302	Fluid Mechanics	3	2	-	60	40	25	25	-	150	3	1	-	4
3	MJ	MJ1101303	Material Science and Engineering	3	-	-	60	40	-	-	-	100	3	-	-	3
4	MJ	MJ1101304	Chemical Technology	3	2	-	60	40	25	-	25	150	3	1	-	4
5	MJ	MJ1101305	Process Heat Transfer	3	2	-	60	40	25	25	-	150	3	1	-	4
6	MJ	MJ1101306	Skill Based Course –III- Fluid Moving Machineries	-	2	-	-	-	25	-	25	50	-	1	-	1
Total				15	8	1	300	200	100	50	50	700	15	4	1	20
7	AE	AE1101307	MOOC-I	-	-	-	-	-	-	-	-	-	-	-	-	2
8	VA	VA1101308	VAC-I	2		-	-	100	-	-	-	100	2	-	-	2

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY)

COLLEGE OF ENGINEERING, PUNE

B. Tech. (Chemical): Semester –IV (2023 COURSE)

Sn No	Catagory	Course	Course	Tea Sc	achiı chem	ng e]	Examin	ation S	cheme	(Mark	s)		C	redit	S
51. NU	Category	Code	Course	L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total
1	MJ	MJ1101401	Chemical Engineering Thermodynamics- II	3	-	1	60	40	-	-	-	100	3	-	1	4
2	MJ	MJ1101402	Design of Heat Transfer Equipment	3	2	-	60	40	25	25	-	150	3	1	-	4
3	MJ	MJ1101403	Mass Transfer	3	2	-	60	40	25	25	-	150	3	1	-	4
4	MJ	MJ1101404	Chemical Reaction Engineering	3	2	-	60	40	25	25	-	150	3	1	-	4
5	MJ	MJ1101405	Chemical Process Instrumentation	3	-	-	60	40	-	-	-	100	3	-	-	3
6	MJ	MJ1101406	Skill Based Course – IV: Industrial Heating Systems	-	2	-	-	-	25	-	25	50	-	1	-	1
Total				15	8	1	300	200	100	75	25	700	15	4	1	20
7	AC	AC1113407	Indian Knowledge System	2	-	-	-	100	-	-	-	100	-	-	-	2
8	EC	EC1101408	Social Activity	-	-	-	-	-	-	-	-	-	-	-	-	2

B. TECH. (CHEMICAL): SEMESTER –III (2023 COURSE)

CHEMICAL ENGINEERING THERMODYNAMICS I

Designation: Professional Core

Pre-requisite Courses: Chemistry, Physics, Mathematics, Material and energy balance calculations.

Teaching Sch	neme	Examination Scheme		Credits Allot	ted
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Tutorial	: 01 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial	: 01
Total	: 04 Hours/Week	Total	: 100 Marks	Total Credits	: 04

Course Outcomes

1 Differentiate between energy, work, and heat

2 Estimate energy requirement for a system using first law of thermodynamics

3 Estimate efficiency of heat engines and entropy of system using second law of thermodynamics

4 Estimate pressure, volume and temperature of fluid.

5 Estimate thermodynamic properties of pure fluids using pressure, volume and temperature conditions.

6 Apply laws of thermodynamics to refrigeration and steam power plants

Topics Covered

UNIT-I	Basic concepts of Thermodynamics	(06 Hours)
	Scope of Thermodynamics; Macroscopic and microscopic Thermodynamics;	
	Dimensions and units; Thermodynamic properties: pressure, temperature,	
	volume; Work, energy and heat; Thermodynamic systems: Closed, open, and	
	isolated systems; Concept of continuum; Intensive and extensive properties;	
	State function and path function; Thermodynamic equilibrium: Mechanical,	
	thermal and chemical; Phase rule; Reversible and irreversible processes.	
UNIT-II	First Law of Thermodynamics and its applications	(06 Hours)

	Joule's experiment and internal energy; First law of Thermodynamics and its	
	generalized mathematical form;Enthalpy; Heat Capacity; Constant volume and	
	constant pressure processes; Applications of first law of Thermodynamics:	
	Mass and energy balance equations for flow process; Limitations of first law	
	of Thermodynamics.	
UNIT-III	Second Law of Thermodynamics	(06 Hours)
	Necessity of second law of Thermodynamics; Kelvin-Plank and Clausius	
	statements of second law of thermodynamics; Heat engine: Carnot cycle and	
	efficiency; Entropy; Clausius entropy inequality; Entropy change of ideal gas;	
	Mathematical statement of second law of thermodynamics; Third law of	
	thermodynamics and its mathematical statement.	
UNIT-IV	Volumetric Properties of Pure Fluids	(06 Hours)
	PVT behaviour of pure substance: PT and PV diagrams; Basic equation of	
	state; Ideal gas and real gas; PVT behaviour of ideal gas; Thermodynamic	
	relations for ideal gas for isochoric, isobaric, isothermal, adiabatic, and	
	polytropic processes; PVT behaviour of real gas: (i) the Viral equations, (ii)	
	two parameter equations such as van der Waal equation, Redlich-Kwong	
	equation, etc. (iii) compressibility factor: two and three parameter theorems of	
	corresponding state.	
UNIT-V	Thermodynamic Properties of Fluids	(06 Hours)
	Fundamental property relations for homogeneous phases: (i) Internal energy,	
	Enthalpy, Helmholtz energy, and Gibbs energy, (ii) Maxwell relationships;	
	Two-phase systems: Clausius - Clapeyron equation and Antoine equation;	
	Thermodynamic diagrams: (i) temperature-entropy, (ii) pressure-enthalpy, and	
	(iii) enthalpy-entropy (Mollier diagram).	
UNIT-VI	Major Applications of Laws of Thermodynamics	(06 Hours)
	(i) Refrigeration	
	Carnot theory and ideal efficiency for refrigeration; Industrial refrigeration	
	cycles and efficiency calculations: Vapor compression cycle and gas absorption	
	cycle.	

	(ii) Steam power plant
	Carnot theory and ideal efficiency for steam power plant; Industrial steam
	power plants and efficiency calculations: Rankine cycle, reheat cycle, and
	regenerative cycle.
Text	Books/References
1	J. M. Smith and H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics",
	McGraw- Hill Publication
2	T. E. Daubert, " Chemical Engineering Thermodynamics", McGraw- Hill Publication
3	K.V. Narayanan," Chemical Engineering Thermodynamics", PHI Learning Pvt. Ltd.
4	B. F. Dodge, "Chemical Engineering Thermodynamics", McGraw- Hill Publication
5	M. D. Koretsky, "Engineering and Chemical Thermodynamics", 2nd Edition, John Wiley & Sons
6	S. I. Sandler, "Chemical Engineering Thermodynamics", McGraw- Hill Publication
7	S. Glasstone, "Thermodynamics for Chemists", Affileated East West Press Pvt.Ltd.
Proj	ect Based Learning
1.	Draw P-T and P-V diagrams for pure substances.
2.	Numerical involving Pure Fluid Properties Coupled to 1st and 2nd Laws.
3.	Solving numerical based on application of thermodynamics to transient open and closed systems
4.	Students have to study any five NPTEL videos related to Chemical Engineering Thermodynamics I
	and prepare/present power point presentation.
5.	Group discussions on any of the following topics:
	a) Importance of Chemical Engineering Thermodynamics in chemical industries.
	b) Practical applications involving various thermodynamic processes.
	c) Ideal Gas, Real Gas, Ideal gas mixture, Ideal solution.
6.	Questions involving first law applied to pure component systems.
7.	Solving numerical in connection with entropy changes of ideal gas for various thermodynamic
	processes.
8.	Solving numerical based on Refrigeration and Liquefaction.

9.	Enhancement in collaborativ	ve learning is done through, group assignments that will be given to
	encourage students to work	with classmates to discuss and complete homework assignments.
10.	Preparation of a brief report	on applicability of equations of states (EOS) in chemical engineering
	systems.	
Sylla	abus for Unit Tests	
Unit	Test I	Units I, II, and III
Unit	Test II	Units IV, V, and VI

Designation: Professional Core

Course Pre-requisite: Physics, Mathematics, Mechanical Operation.

Teaching Scl	neme	Examination Scheme		Credits Allot	ted
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 05 Hours/Week	Term Work	: 25 Marks	Total	: 04
		Practical/Oral	: 25 Marks		
		Total	: 150 Marks		

Course Outcomes

1 Evaluate properties of fluids using basic concept of fluid flow.

2 Apply the basic equations of fluid flow to study various flow systems

3 Select an appropriate type of flow measuring device.

4 Determine the major and minor energy losses for fluid flowing through a pipe.

5 Identify and select various types of fluid moving equipment for fluid flow.

6 Determine the friction factors and pressure drop for flow through packed and fluidized bed.

Topics Covered

UNIT-I	Basic Concepts of Fluid Flow	(06 Hours)
	Fluid statics and dynamics: Scope and applications; Rheological classification of	
	fluids; Incompressible and compressible fluids; Types of flow: laminar, transition	
	and turbulent flow and their characteristics, Reynold's experiment; Properties of fluids:	
	concept of viscosity, Newton's law of viscosity, viscosity of gases and liquids,	
	eddy viscosity; Concept of fluid pressure and hydrostatic equilibrium.	
UNIT-II	A. Equations of Fluid Flow	(06 Hours)

	turbulent flow, drag on immersed bodies; Flow through packed and fluidized	
	a flat plate, boundary layer separation, drag on a flat plate for laminar and	
	Hydrodynamic boundary layer: concept, boundary layer thickness, growth over	
UNIT-VI	Flow Past Immersed Bodies	(06 Hours)
	power calculations for given duty.	
	and compressors: selection and specifications, factors affecting performance,	
	affecting the performance of a pump, calculation of power requirement; Blowers	
	phenomena, net positive suction head (NPSH) calculations, operating parameters	
	Pumps: types, selection and specifications, characteristic curves, cavitation	
UNIT-V	Flow Moving Machinery	(06 Hours)
	expansion and contraction, fittings, valves, bends etc.	
	flow, effect of wall roughness; Minor losses: pipe entrance and exit, sudden	
	flow, friction factor chart (Moody's diagram), frictional loss in highly turbulent	
	factor: concept, correlations of friction factor for laminar, transition and turbulent	
	Major losses: Head loss due to friction, Darcy-Weisbach equation; Friction	
UNIT-IV	Major and Minor Losses in Pipe Flow	(06 Hours)
	Pitot tube, orifice meter, venturi meter, rotameter, notches and weirs.	
	B. Flow metering devices	
	of Universal velocity profile and its use.	
	Boussinesq hypothesis, Prandtl mixing length theory, turbulent pipe flow, basis	
	Basics of turbulent flow, equations of continuity and motion for turbulent flow,	
UNIT-III	A. Turbulent flow	(06 Hours)
	Poiseuille equation, relation between average and maximum velocity.	
	velocity profiles, relationship between skin friction and wall shear, Hagen	
	Characteristics of pipe flow: laminar flow in pipes, shear stress distribution and	
	B. Flow of Incompressible Fluids	
	of fluid flow.	
	limitations of Bernoulli's equation, correction factors: Applications of equations	
	equation: Bernoulli's equation: assumptions, equation with and without friction	
	Equation of continuity and motion: Cartesian coordinates, Navier Stokes	

	bads: flow through bads of solids motion of particles through the fluid particle	
	beds. How through beds of solids, motion of particles through the fund, particle	
	settling, mechanism of fluidization, minimum fluidization velocity, friction	
	factors for flow through beds of solids, pressure drop calculations, particulate and	
	aggregative fluidization, applications of fluidization.	
Text	Books/References	
1	McCabe W.L, Smith J.C, and Harriott P .: "Unit Operations of Chemical Engineering", 5thed	ition,
	McGraw Hill Publications.	
2	Coulson J.M., Richardson J.F., Backhurst J.R., J.H. Harker J.H.: "Chemical Engineering Vol	lume 1", 6 th
	edition, Pergamon Press.	
3	Gupta S.K.:"Momentum transfer operations", Tata McGraw Hill Publishers.	
4	Bansal R.K.:"A text book of fluid mechanics and hydraulic machines", Laxmi Publications (P) Ltd,
	NewDelhi.	
5	Bird R.B., Stewart W.E., Lightfoot E.N.:"Transport Phenomena", John Wiley & Sons, New	York.
6	Denn M.M.: "Process fluid mechanics", Prentice Hall Publications.	
Proje	et Based Learning:	
1	Investigate and prepare a report on any one of the following topics.	
	a) Importance of fluid flow operations in chemical industries.	
	b) Pumps, blowers and compressors.	
	c) Flow measuring devices.	
2	Students have to study any five NPTEL videos related to fluid flow operations and prepare/	present power
	point presentation.	
3	Visit to suppliers and prepare a report on detailed specifications of following fluid moving en	quipments.
	a) Pumps.	
	b) Blowers.	
	c) Compressors.	
4.	Visit to suppliers and prepare a report on detailed specifications of following flow measuring	g devices.
	a) Venturimeter.	
	b) Orificemeter.	

1	c) Pitot tube.
	d) Roatameters.
5.	Students have to visit chemical industry and make a detailed report on overall fluid flow operations.
6.	Prepare models for various types of valves and write industrial applications.
7.	Prepare models for various types of bends and write industrial applications.
8.	Prepare models for various types of fittings and write industrial applications.
9.	Prepare a report on fluid flow operations which are newly introduced in the current year.
10	Write a report on your visit to research and development laboratory of national/international repute.
11	Technical interview based on knowledge of fluid flow operations.
12	With the help of this subject knowledge, write a report on how you would apply your concepts in industry.
Stude	ents in a group of 3 to 4 shall complete any one project from the above list. In addition to these above stated
topic	s concern faculty member may design his/her won topics.
Tern	n Work
Tern	n work will consist of the experiments listed below, out of which at least eight experiments should be
perfo	ormed in laboratory by the students.
1	To determine kinematic viscosity and to study the effect of temperature on kinematic viscosity of
1	given oil.
2	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number.
2 3	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter.
2 3 4	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter.
2 3 4 5	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow.
2 3 4 5 6	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils.
2 3 4 5 6 7	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils. To find losses due to sudden expansion and contraction in pipe.
2 3 4 5 6 7 8	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils. To find losses due to sudden expansion and contraction in pipe. To calculate minimum fluidization velocity using fluidized bed reactor.
2 3 4 5 6 7 8 9	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils. To find losses due to sudden expansion and contraction in pipe. To calculate minimum fluidization velocity using fluidized bed reactor. To verify Bernoulli's theorem.
2 3 4 5 6 7 8 9 10	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils. To find losses due to sudden expansion and contraction in pipe. To calculate minimum fluidization velocity using fluidized bed reactor. To verify Bernoulli's theorem. To study characteristics of centrifugal pump.
2 3 4 5 6 7 8 9 10 11	given oil. To study flow characteristics using Reynolds apparatus and determine Reynolds number. To determine the coefficient of discharge for venturimeter. To determine the coefficient of discharge for orificemeter. To determine Darcy Weisbach coefficient of friction for laminar and turbulent flow. To determine friction and pressure drop for flow through helical/spiral coils. To find losses due to sudden expansion and contraction in pipe. To calculate minimum fluidization velocity using fluidized bed reactor. To verify Bernoulli's theorem. To study characteristics of centrifugal pump. To Study Darcy's law.

13	To determine the coefficient of discharge for different notches like rectangular notch, V notch, and					
	trapezoidal notch.					
14	14 To determine terminal velocity of particles in fluids of different viscosity and plot a graph of drag					
	coefficient (C _D) as a function of NRe.					
Sylla	bus for Unit Test					
Unit	Test : I	Units : I, II, and III				
Unit	Test : II	UNIT : IV, V, and VI				

MATERIAL SCIENCE AND ENGINEERING

Designation: Professional Core

Pre-requisite Courses: Chemistry, Physics and Biology

Teaching S	cheme	Examination Scheme		Credits Allott	ed	
Lectures	: 3 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03	
Total	: 3 Hours/Week	Internal Assessment	: 40 Marks	Total credits	: 03	
		Total	: 100Marks			
		·				
Course Ou	tcomes:					
After compl	etion of the course stu	dents would be able to:				
1 Appraise	e material properties	to choose appropriate material	l for desired ap	plication		
2 Compare	e properties of metals	s and alloys to select appropria	ate metal for d	esired application	n	
3 Analyze	properties of hydroc	arbon materials and recomme	nd proper mate	erial for desired a	application	
4 Define a	appropriate ceramic n	naterial for required applicatio	ns			
5 Assess p	possibility of materia	l failure by mechanical and cl	hemical failure	e based upon app	plication and	
environ	mental conditions					
6 Design a	appropriate preventiv	e measure to avoid material fa	ilure			
		Topics covered				
UNIT-I	Introduction				(06 Hours)	
	Introduction to mate	erials; Bonding between atoms	metallic, ionic	e, covalent; Van		
	der Waals forces;	Role of materials selection i	in design; Stru	acture-property-		
	processing-performation	nance relationships; Materials and criteria for selection of				
material in process		ndustries; Material properties: 1	Mechanical, the	ermal, chemical,		
	electrical, magnetic	and technological properties	; Modification	and control of		
	material properties.					
UNIT-II	Metal and Their A	Alloys			(06 Hours)	

	Ferrous materials: Pure iron, cast iron, mild steel, stainless steels, special alloy	
	steels, iron and iron carbide; Phase diagram: Heat treatment of carbon steels.	
	Nonferrous materials: Lead, tin, aluminium, zinc, nickel, copper, magnesium	
	and their alloys; Properties and applications in process industries.	
UNIT-III	Hydrocarbon Materials	(06 Hours)
	Polymers: Natural and synthetic polymeric materials; Polymer material	
	structure and properties: Deformation, flow and melt characteristics,	
	morphology and order in crystalline polymers, mechanical properties of	
	polymers; Polymer structure and physical properties correlation; Selection of	
	polymeric materials for equipment linings; Fibre reinforced plastic;	
	Application of special polymers like Polyester, Teflon in engineering;	
	Sustainable and biodegradable polymers; Depolymerization; Polymer	
	composites and blends	
	Paints, Coatings and Adhesives: Compositions, properties and applications	
UNIT-IV	Ceramic, Glasses and Cement	(06 Hours)
	Definition of ceramics and glasses; Interaction between structure, processing,	
	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and	
	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and	
	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate.	
	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre	
	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete.	
UNIT-V	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: 	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution 	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution impurities in solids, dislocations, types and characteristics of dislocations, 	(06 Hours)
UNIT-V	Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis <i>Thermal and mechanical failures:</i> Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution impurities in solids, dislocations, types and characteristics of dislocations, interfacial defects, stacking faults	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution impurities in solids, dislocations, types and characteristics of dislocations, interfacial defects, stacking faults Chemical failure: Acid base environment, water; Corrosion: Theories of 	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution impurities in solids, dislocations, types and characteristics of dislocations, interfacial defects, stacking faults Chemical failure: Acid base environment, water; Corrosion: Theories of corrosion, corrosion attack methods; Types of corrosion: Chemical, biochemical, 	(06 Hours)
UNIT-V	 Definition of ceramics and glasses; Interaction between structure, processing, and properties; Applications of ceramic and glass materials; Crystalline and non-crystalline ceramics: Silicates, refractory, clays, glass, vitreous silica and borosilicate. Cement and its properties: Special cements, cement concrete, RCC- Pre stressed concrete. Material Failure Analysis Thermal and mechanical failures: Creep; Stress; Crystal structure and defects: Vacancies, equilibrium concentration of vacancies, interstitial and substitution impurities in solids, dislocations, types and characteristics of dislocations, interfacial defects, stacking faults Chemical failure: Acid base environment, water; Corrosion: Theories of corrosion, corrosion attack methods; Types of corrosion: Chemical, biochemical, and electrochemical; Internal and external factors affecting corrosion of chemical 	(06 Hours)

UNIT-VI		Material failure prevention	(06 Hours)	
		Property enhancement by electroplating; Glass and ceramic linings; Polymer		
		lining; Paints; Coatings; Heat treatment techniques; Alloy preparation;		
	Composite and blend formation; Control and prevention of corrosion.			
Text	t Books/	References:		
1	Kodgir	e V. D.: Material Science and Metallurgy for Engineers, 44 th Ed. Everest publication Ind	ia, 2018	
2	Gowar	ikar V. R., Vishwanath N. V., Shreedhar J.: Polymer science, New age	International	
	publica	ation, India, 1986		
3	Budins	ky K. G., Budinsky K. M.: Engineering materials- Properties and Selection, 9th	Ed. Prentice	
	Hall of	India, 2009.		
4	Clauste	r H. R.: Industrial and Engineering materials, McGraw Hill Book Co. India, 1995		
5	Lee J.	L. and Evans: Selecting Engineering Materials for Chemical and Process Plan	its, Business	
	Works	, New York, 1974		
6	Raghavan V.: Material Science and Engineering, 4 th Ed. PHI Learning Private Limited, India, 2015			
	•			
Proj	ect base	ed learning: Below is the list of possible topics, which is for guidance faculty can	n design and	
prov	ide relev	vant topics in addition to these		
1	Study a	and prepare a presentation of different materials, their bonds, bond energy and the	eir effect on	
	materia	al properties		
2	Study a	and prepare a presentation on factors affecting selection of material for any partic	ular	
	engine	ering application		
3	Investi	gate and prepare the report on cast iron, composition of cast iron and variation in	property	
	and ap	plication of cast iron based on its composition		
4	Investi	gate and prepare the report on stainless steel and its types, composition of stainle	ss steel	
	based upon its types and variation in property and application of stainless steel based of		ı its	
	compo	sition		
5	Investi	gate and prepare the report on lead and its alloys, composition of alloys and varia	tion in	
	property and application of alloys based on its composition			

6	Investigate and prepare the	report on Tin and its alloys, composition of alloys and variation in		
	property and application of	alloys based on its composition		
7	Investigate and prepare the	report on Aluminium and its alloys, composition of alloys and variation		
	in property and application	of alloys based on its composition		
8	Investigate and prepare the	report on Nickel and its alloys, composition of alloys and variation in		
	property and application of	alloys based on its composition		
9	Investigate and prepare the	report on Copper and its alloys, composition of alloys and variation in		
	property and application of	alloys based on its composition		
10	Investigate and prepare the	report on Magnesium and its alloys, composition of alloys and variation		
	in property and application	of alloys based on its composition		
11	Investigate and prepare the	report on properties and benefits of polymer, property tuning based		
	upon monomer and compos	sition variation		
12	Investigate and prepare the	report on properties and benefits of polymer, property tuning based		
	upon monomer and composition variation			
13	Investigate and prepare the	report on biodegradable polymers and depolymerization, its importance		
	and environmental impact			
14	Investigate and prepare the	report on surface coating, its importance, and preparation of surface for		
	the same			
15	Investigate and prepare the	report on effect of composition variation and processing on the		
	properties and applicability	of ceramics		
16	Investigate and prepare a re	port on the causes of material failure (chemical or mechanical) bay		
	taking a suitable industrial	or real life example		
Sylla	abus for Unit Test:			
Unit	Test : I	UNIT: I, II, and III		
Unit	Test : II	UNIT : IV, V, and VI		

CHEMICAL TECHNOLOGY

Designation: Professional Core

Pre-requisite Courses: Chemistry, Material and energy balance calculations

Teaching Scheme		Examination Scheme		Credits Allotted		
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03	
Practical	: 02 Hours/ Week	Internal Assessment	: 40 Marks	Practical	: 01	
Total	: 05 Hours / Week	Term Work	: 25 Marks	Total	: 04	
		Practical/Oral	: 25 Marks			
		Total	: 150 Marks			

Course Outcomes

1 Learn the concept of unit operations and unit processes.

2 Analyze recent methods used in chloro alkali and electrolytic industries.

3 Learn the manufacturing processes used in sulfur and nitrogen industry

4 Learn the recent techniques used in oil industry.

5 Analyze the various processes used in Sugar-Starch industry and fermentation industry.

6 Learn the production methods used in petrochemical industry.

Topics covered

UNIT-I	Unit operations and unit processes					
	Unit operations and unit processes; Concept of block diagram; Process flow					
	diagram (ASME guidelines); Major engineering problems; Advantages and					
	disadvantages of the process and product applications; Schematic					
	representation and applications for unit operations and unit processes.					
UNIT-II	Chlor-alkali and electrolytic industry, sea chemicals	(06 Hours)				
	i) Chlor-alkali industry: Recent processes for the production of soda ash, NaOH					
	and Chlorine					

	ii) Sea chemicals: Sodium-Magnesium compounds, different methods for	
	different salt recovery	
	iii) Electrolytic industry: Production of Aluminium, Magnesium	
UNIT-III	Nitro- Phosphorous Industry and Sulphur Industry	(06 Hours)
	i) Nitrogen Industry: Recent processes for the production of Ammonia, Nitric	
	acid, Urea, Ammonium Nitrate	
	ii) Phosphorous Industry: Production of Phosphoric acid, single and triple	
	Super Phosphate, Ammonium Phosphate	
	iii) Sulphur Industry: Production of Sulphur, Sulphuric acid, Ammonium	
	sulphate.	
UNIT-IV	Oils, Fats, Soaps and Detergents	(06 Hours)
	Different fatty acids, Extraction of oil from seeds, Oil purification,	
	Hydrogenation of oil. Solvent extraction process, hydrogenation of oil,	
	production of soap, natural glycerine, production of detergents.	
UNIT-V	Sugar-Starch Industry and Fermentation industry	(06 Hours)
	Sugar-Starch Industry: Production of Sugar, Starch Derivatives Raw and	
	refined sugar, By-products of sugar industries, Starch and starch derivatives.	
	Fermentation Industry: Production of ethyl alcohol, absolute alcohol. Bio	
	Pharmaceutical Industry: Production of penicillin, antibiotics	
UNIT-VI	Petrochemical Industry	(06 Hours)
	i) C1 Compounds: Production of methanol, formaldehyde, and halogenated	
	hydrocarbons.	
	ii) C2 Compounds: Production of ethylene and acetylene- steam cracking of	
	hydrocarbons, ethylene dichloride, vinyl chloride.	
	iii) C3 Compounds: Production of propylene by indirect hydration, acetone,	
	cumene.	
	iv) Aromatic Compounds: Production of phenol, phthalic anhydride, and	
	styrene.	
		1
Text Books	/References	

1	C.E.Dryden, Outlines of Chemical Technology" (Edited and Revised by M.Gopal Rao and Sittig .M) 3 rd Ed.,
	East West Press., New Delhi, 1997.
2	G.T.Austin, Shreve's Chemical Process Industries, 5 th Ed., McGraw Hill Education publisher,
	2017.
3	P.H.Groggins, Unit process in organic synthesis, 5 th Ed.Tata McGraw-Hill Edition, 2004.
4	W.L.Faith, D.B. Keyes, R.L. Clark, Industrial Chemicals, John Wiley, 1975.
5	Kirk and Othmer, Encyclopedia of Chemical Technology, Wiley, 2005
6	G.N.Pandey and S.D.Shukla, Chemical Technology Vol – I, Vikas publication, 2004
Proj	ect Based Learning
1	Model making of any one Unit operation used in chemical process industry.
2	Students should compile the list of vendors (manufacturers of pumps, contact, and address) along
	with the details like type, specifications, and costs and should prepare the comparative for the same.
3	Based on one process industry (preferably visited during the term), students will prepare the report
	which includes the consumption pattern of the products produced, process flow diagram and
	process description, major engineering problems in the industry.
4	Students should compile the list of Boiler manufacturers, contacts, and address along with their
	product range specifications.
5	AutoCAD drawing of process flow diagram for any one process from the syllabus
Terr	n Work
Tern	n work will consist of the experiments listed below, which are to be performed in laboratory by the
stude	ents.
1	Prepare a report on "Indian scenario of Chemical Process industries" which will include the name
	of industries (from different chemical zones), products manufactured, and production capacity.
2	Prepare a report on Importance of Chlor-alkali industries in India
3	Prepare a report on "Fertilizer industries in Maharashtra and Gujarat" which will include the name
	of industries (from different chemical zones), products manufactured, and production capacity.
4	Manufacture of liquid soap on Laboratory scale.
5	Study of fermentation process in wine manufacturing.

6	Give a presentation on "commercial aspects of petrochemical products".			
7	Students should compile the list of vendors providing "water treatment plants" in chemical process			
	industries along with their p	roduct specifications.		
8	Study of various valves used in Chemical process industries.			
9	Study of Material Safety Data Sheet (MSDS) for the chemicals used in laboratory			
Sylla	bus for Unit Test			
Unit	Test : I	Units : I, II, and III		
Unit	Test : II	UNIT : IV, V, and VI		

PROCESS HEAT TRANSFER

Designation: Professional Core

Pre-requisite Courses: Basic science courses, Thermodynamics, Fluid mechanics, Material and energy balance calculations.

Те	eaching So	cheme	Examination Scheme		Credits Allot	ted
Le	ectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Pr	actical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: -
To	otal	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Practical	: 01
			Practical/Oral	: 25 Marks	Total Credits	: 04
			Total	: 150Marks		
					1	
C	ourse Out	comes				
1	Estimate	rate of heat transfer by	conduction mode			
2	Estimatio	on of overall heat tran	sfer coefficient.			
3	Estimatio	on of heat transfer co	efficient for natural and force	ed convection u	using appropria	te empirical
	correlation.					
4	Estimate	rate of heat transfer i	n boiling and condensation ph	nenomena.		
5	Estimatio	on of radiative heat tr	ansfer rate.			
6	Estimatio	on of time required t	o raise/reduce the temperatur	e of given prod	cess/operation l	by a desired
	degree.					
			Topics Covered			
U	NIT-I	Conduction				(06 Hours)
		Concept of heat c	onduction; Fourier's law of	heat conduct	ion; Thermal	
		conductivity: solids	, liquids and gases; Effect of	temperature an	d pressure on	
		thermal conductivit	y; Steady state heat conduction	ion through con	mposite wall;	

	Steady state heat conduction through a variable area: Cylinder and sphere;			
	Steady state heat conduction with heat sources: plane wall, cylinder and sphere;			
	Average temperature calculations.			
UNIT-II	Heat Transfer Coefficient	(06 Hours)		
	Concept of convective heat transfer and heat transfer coefficient; Newton's law			
	of convective heat transfer; Overall heat transfer coefficient: Heat transfer			
	between fluids separated by plane wall and cylindrical wall; Heat transfer from			
	extended surfaces; Thermal contact resistance; Critical insulation thickness;			
	Optimum insulation thickness.			
UNIT-III	Natural and Forced Convection	(06 Hours)		
	Concept of natural and forced convection; Estimation of heat transfer			
	coefficients: Dimensional analysis and dimensionless groups; Factors affecting			
	individual heat transfer coefficient; Empirical correlations for natural			
	convection: flat plate, cylinder and sphere; Empirical correlations for forced			
	convection: Internal flows (laminar and turbulent flow through circular and			
	non-circular pipes) and external flow (flat plate, cylinder and sphere); Heat			
	transfer with variable driving force: Counter current and co-current operations;			
	Momentum and heat transfer analogies.			
UNIT-IV	Boiling and Condensation	(06 Hours)		
	Concept of boiling; Boiling regimes and heat transfer rate: Natural convection,			
	nucleate boiling, transition boiling and film boiling; Concept of condensation;			
	Film-wise and drop-wise condensation; Film condensation on vertical and			
	horizontal surfaces; Estimation of condensation heat transfer coefficient:			
	Nusselt's theory; Factors affecting the rate of condensation.			
UNIT-V	Radiation	(06 Hours)		
	Concept of radiation; Blackbody radiation; Radiative heat transfer laws:			
	Planck's law, Wien's law, Stefan-Boltzmann law, Kirchhoff's law;			
	Radiativeheat exchange between surfaces: View factor; Rate of radiation			
	exchange between black and grey bodies; Radiation intercepted by shield;			
	Radiation combined with conduction and convection.			

UNIT-VI		Unsteady State Heat Transfer			
		Unsteady state heat conduction; Concept of thermal diffusivity; Unsteady state			
		heat transfer in mechanically agitated contactors (MAC): MAC configurations,			
		Overall heat transfer calculations, Estimation of time needed to attain desired			
		temperature for a given operation/process using isothermal and non-isothermal			
		heating medium; Unsteady state heat transfer in multiphase reactors:			
		Estimation of overall heat transfer coefficient and time needed to calculate			
		process temperature attainment.			
Text	Books/	References			
1	Holma	n, J.P., "Heat Tansfer", 9th edn. The McGraw-Hill Companies, India, 2008			
2	Dutta l	B. K., "Heat Transfer: Principles and Applications", Prantice Hill Inc. India, 2001			
3	Kern D	D. Q., "Process Heat Transfer", Tata McGraw-Hill Edition, Singapore, 1997			
4	McCat	e, W. L., Smith, J. C., and Harriott, P., "Unit Operations of Chemical Engineerir	ng", 6 th Ed.,		
	McGra	w-Hill, Singapore, 2001			
5	Chapm	an, A.J. "Heat Transfer", 4th Ed. Maxwell Macmillan International Edition, 1984	•		
Proj	ect Base	ed Learning			
1.	Sugges	t best suitable heat transfer mechanism for given heat load requirement.			
2.	Derive	the correlation for the heat transfer for given conditions of fluids and heat supply mee	chanisms and		
	designs				
3.	Prepare	e a model for any of the heat exchanger.			
4.	Elaborate in detail use of heat transfer systems for process requirements.				
5.	With th	he help of this subject knowledge, write a guideline report on how you would apply y	our concepts		
	in industry.				
6.	Group	Group discussion on the recent advances in heat transfer systems and heat economy.			
7.	Write a report on your visit to research and development laboratory of national/international repute.				
8.	Give fifteen minutes presentation (seminar) on particular topic and prepare a report.				
9.	Visit chemical industry and prepare a detailed report on heat exchangers used in industry.				
10.	Students have to study any five NPTEL videos related to heat transfer and prepare/present power point				

	presentation.				
11.	Explain in detail use of heat analysis and material conditions on heat transfer economy.				
12.	Prepare a report on heat exchangers design updates which are newly introduced in the current year,				
13	Design suitable heat exchang	e using HTRI or other software in heat exchanger design			
*Stu	dents in a group of 3 to 4 shall	complete any one project from the above list.			
Terr	n Work				
Terr	n work will consist of the ex	periments listed below, which are to be performed in laboratory by the			
stud	ents. The list is not inclusive	of all more experiments can be designed as per course curriculum and			
cond	lucted				
1	To determine rate of heat flo	w and thermal conductivity of an insulating material.			
2	To determine thermal condu	ctivity of a metal bar.			
3	To study Newton's law of cooling to find rate of heat flow.				
4	To determine the local heat transfer coefficients using the various correlations in natural convection.				
5	To determine heat transfer coefficient in forced convection.				
6	To study film wise condensa	tion.			
7	To study drop wise condense	ation.			
8	To determine the critical hea	ıt flux			
9	To study Stefan-Boltzman la	w and find the value of its constant.			
10	To study heat transfer throug	gh a composite wall.			
11	To determine emissivity of an aluminum plate.				
12	To study unsteady state processes.				
Syllabus for Unit Tests					
Unit	Unit Test I Units I, II, and III				
Unit	Unit Test II Units IV, V, and VI				

SKILL BASED COURSE-III: FLUID MOVING MACHINERIES

Designation: Skill Development

Pre-requisite Courses: Fluid Mechanics

Teaching Scheme		Examination Scheme		Credits Allotted	
Practical	: 02 Hours/Week	Term Work	: 25 Marks	Practical	: 01
Total	: 02 Hours/Week	Practical/Oral	: 25 Marks	Total	: 01
		Total	: 50 Marks		

Course Outcomes

After completion of the course students will be able to

2 Obtain the operating parameters affecting the performance of a pump and calculate power requirement.

3 Analyse various types of blowers and obtain the factors affecting the performance of blowers.

4 Calculate the power requirement of blowers.

5 Select the various types of compressors and obtain the factors affecting the performance of compressors

6 Calculate the power requirement of compressors.

Topics Covered

Topics Covered				
UNIT-I	Pumps			
	Types, selection and specifications, characteristic curves, net positive suction head (NPSH)			
	calculations.			
UNIT-II	Power requirement of pumps			
	Operating parameters affecting the performance of a pump, Calculation of power requirement			
	of various types of pumps, Operation and maintenance of pumps.			
UNIT-III	Blowers			
	Selection and specifications, Factors affecting performance the performance of blowers			

UNIT-IV	Power requirement of Blowers				
	Operation and maintenance of blowers, Power calculations for given duty.				
UNIT-V	UNIT-V Compressors				
	Design principle, Classification and types of compressors, Selection and specifications,				
	Factors affecting performance.				
UNIT-VI	Power requirement of Compressors				
	Operation and maintenance of compressors, Power calculations for given duty.				
Text Books/	References				
1	McCabe W.L, Smith J.C, and Harriott P.:"Unit Operations of Chemical Engineering",				
	5 th edition, McGraw Hill Publications.				
2	Coulson J.M., Richardson J.F., Backhurst J.R., J. H. Harker J.H.:"Chemical Engineering				
	Volume 1", 6 th edition, Pergamon Press.				
3	Gupta S.K.:"Momentum transfer operations", Tata McGraw Hill Publishers.				
4	Bansal R.K.:"A text book of fluid mechanics and hydraulic machines", Laxmi Publications				
	(P) Ltd, NewDelhi.				
5	Denn M.M.: "Process fluid mechanics", Prentice Hall Publications.				
Term Work					
Term work	will consist of the practical based on the above topics. Any eight practical are to be performed				
in laboratory	//industry by the students.				

B. TECH. (CHEMICAL): SEMESTER –IV (2023 COURSE)

CHEMICAL ENGINEERING THERMODYNAMICS II

Designation: Professional Core

Pre-requisite Courses: Chemistry, physics and mathematics, Chemical engineering thermodynamics, Material and energy balance calculations

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Tutorial	: 01 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial	: 01
Total	: 04 Hours/Week	Total	: 100 Marks	Total Credits	: 04

Course Outcomes

1 Characterize ideality of gaseous mixtures and liquid solutions.

2 Estimate fugacity coefficient to measure the deviation from ideality.

3 Estimate activity coefficient to measure the deviation from ideality.

4 Analyze vapor liquid equilibrium using thermodynamic stability and consistency tests.

5 Estimate partition coefficient for liquid liquid equilibrium and solid liquid equilibrium.

6 Estimate chemical reaction constant and composition of system at thermodynamic equilibrium.

	Topics Covered					
UNIT-I	Thermodynamics of Ideal Solution	(06 Hours)				
	Fundamental property relationships for solutions; Concept of chemical					
	potential and partial molar properties; Estimation of partial molar properties;					
	Gibbs-Duhem equation; Ideal gas mixtures: Gibbs theorem; Ideal solution:					
	Characteristics of ideal solution, Lewis Randall law.					
UNIT-II	Thermodynamics of Non-ideal Gas Mixtures	(06 Hours)				

	Concept of non ideality in gaseous mixtures; Fugacity and fugacity coefficient	
	for non-ideal gas mixtures; Effect of temperature and pressure on fugacity	
	coefficient; Estimation of fugacity coefficient; Concept of residual property;	
	Relation between residual property and fugacity coefficient.	
UNIT-III	Thermodynamics of Non-ideal Liquid Solution	(06 Hours)
	Concept of non-ideality in liquid solution; Activity and activity coefficient for	
	non-ideal solution; Effect of temperature and pressure on activity coefficient;	
	Estimation of activity coefficient; Excess properties: Gibbs excess energy;	
	Relation between excess property and activity coefficient; Excess properties of	
	mixing and heat effects.	
UNIT-IV	Vapor-liquid equilibrium (VLE):	(06 Hours)
	Criteria of vapour liquid equilibria and stability; Basic equation for vapor-	
	liquid equilibrium (Raoult's law); Qualitative behavior of VLE; Non-ideality in	
	vapour and liquid phases (Modified Raoult's law); Estimation of liquid phase	
	properties from VLE data; Excess Gibbs free energy models; Azeotropic data;	
	Multicomponent VLE; Bubble point and dew point calculations;	
	Thermodynamic consistency test for VLE data.	
UNIT-V	Liquid-liquid Equilibria (LLE) and Siquid-liquid Equilibria (SLE):	(06 Hours)
	Equilibrium and stability; LLE: Basic equation governing LLE, Distribution	
	coefficient (Partition Coefficient), solubility diagram, Intermolecular	
	interactions; SLE: Basic equation governing SLE.	
UNIT-VI	Chemical reaction equilibria	(06 Hours)
	The reaction coordinate; Application of equilibrium criteria to chemical	
	reactions; The standard Gibbs energy change and the equilibrium constant;	
	Effect of temperature on the equilibrium constant; Evaluation of equilibrium	
	constant; Relation of equilibrium constants to composition; Phase rule for	
	reacting systems; Multi-reaction equilibria.	
	<u> </u>	I
Text Books	:/References	
1		

1	J. M. Smith and H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics",				
	McGraw- Hill Publication				
2	T. E. Daubert, "Chemical Engineering Thermodynamics", McGraw- Hill Publication				
3	K.V. Narayanan," Chemical	Engineering Thermodynamics", PHI Learning Pvt. Ltd.			
4	B. F. Dodge, "Chemical Eng	gineering Thermodynamics", McGraw- Hill Publication			
5	M. D. Koretsky, "Engineering"	ng and Chemical Thermodynamics", 2nd Edition, John Wiley & Sons			
6	S. I. Sandler, "Chemical Eng	gineering Thermodynamics", McGraw- Hill Publication			
7	S. Glasstone, "Thermodynamic statement of the statement o	mics for Chemists", Affileated East West Press Pvt.Ltd.			
Proj	ect Based Learning				
1.	Solving numerical in connect	ction with phase equilibria			
2.	Solving numerical based on application of Roult's law for the calculation of dew point and bubble				
	point				
3.	Unsolved numerical from the reference books on various topics studied.				
4.	Draw P-xy and T-xy diagrams.				
5.	Solving numerical based on chemical reaction equilibrium.				
6.	Enhancement in collaborative learning is done through, group assignments that will be given to				
	encourage students to work	with classmates to discuss and complete homework assignments.			
7.	Students have to study any five NPTEL videos related to Chemical Engineering Thermodynamics I				
	and prepare/present power p	point presentation.			
8.	Solving numerical in connect	ction with the solution thermodynamicswrt industrial case studies			
9.	Evaluation of thermodynam	ic properties for pure species and species in solution			
10.	Preparation of a brief report	on applicability of liquid-liquid equilibrium (LLE) in chemical			
	engineering systems.				
Sylla	abus for Unit Tests				
Unit	Test I	Units I, II, and III			
Unit	Unit Test II Units IV, V, and VI				

DESIGN OF HEAT TRANSFER EQUIPMENT

Designation: Professional Core

Pre-requisite Courses: Process heat transfer, Particulate technology, Chemical engineering thermodynamics, Material and energy balance calculations

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Total Credits	: 04
		Practical/Oral	: 25 Marks		
		Total	: 150 Marks		

Course Outcomes

- 1 Perform process design of double pipe heat exchanger
- 2 Perform process design of shell and tube heat
- 3 Perform the evaporation calculations and estimate heat transfer area of evaporator.
- 4 Analyse heat transfer characteristics of mechanically agitated contactors
- 5 Analyse heat transfer characteristics of fluidised beds
- 6 Analyse the heat transfer characteristics of furnaces

Topics Covered

UNIT-IDouble pipe heat exchanger (DPHE)		(06 Hours)
	Selection criteria of DPHE, Heat load calculations; Estimation of physical	
	properties of fluid if any; Material of construction (MOC); Selection of flow	
	arrangements; LMTD calculations; Estimation of film heat transfer coefficient	
	using appropriate empirical correlation; Estimation of overall heat transfer	

	coefficient; Heat transfer area; Concept of hydraulic diameter; Pressure drop			
	calculations: Design and working pressure.			
UNIT-II	Shell and tube heat exchangers	(06 Hours)		
	Shell and tube configurations; Heat load calculations; Material of construction			
	(MOC); Estimation of film heat transfer coefficient; Estimation of overall heat			
	transfer coefficient; Heat transfer area and number of tubes; Sizing of shell and			
	tube heat exchanger: Design of baffle, tie rods, tube sheet and nozzles; Pressure			
	drop calculations: Design and working pressure; TEMA standards.			
UNIT-III	Evaporators	(06 Hours)		
	Concept of evaporation; Types of evaporators; Performance parameters of			
	evaporators: capacity, economy and steam consumption; Methods of feeding			
	for evaporators; Material and energy balances; Sizing of evaporators; Design			
	of steam chest: Estimation of heat transfer coefficient and area, boiling point			
	elevation; Factors affecting performance of evaporators; Pressure drop			
	calculations: Design and working pressure.			
UNIT-IV	Mechanically agitated contactors (MAC)	(06 Hours)		
	Heat transfer configurations of MAC; Heat load calculations; Heat transfer			
	calculations for homogeneous and heterogeneous systems: Estimation of film			
	heat transfer coefficient, overall heat transfer coefficient and heat transfer area;			
	Sizing of MAC; Material of construction (MOC); Factors affecting heat			
	transfer characteristics: system and operating parameters; Indian MAC			
	standards.			
UNIT-V	Fluidised beds	(06 Hours)		
	Concept of fluidization; Fluidization regimes; Pressure drop calculations:			
	Effect of superficial velocity and physical properties of solid and fluidising			
	medium; Velocity voidage relationship; Determination of heat transfer rates:			
	Overall heat transfer coefficient calculations; Sizing of fluidised beds based on			
	heat transfer characteristics;			
UNIT-VI	Furnaces	(06 Hours)		

	Components of a furnace; Classification, Performance measures in furnaces:		
	Excess air, heat distribution, temperature control, draft control, waste heat		
	recovery; Heat transfer in furnace. Furnace efficiency calculations. Lobo and		
	Evans method Wohlenberg simplified method		
Proi	ect Based Learning:		
1	Visit to any heat transfer equipment fabrication industry and prepare report on internals of heat		
1	exchanger		
	exchanger.		
2	Perform process design for heat exchanger for given application		
3	Visit to sugar industry to observe operation of evaporators and prepare report.		
4	Enlist TEMA Standards.		
5	Make Power point presentation on recent advances in heat transfer characteristics of any one		
	chemical process equipment		
6	Write report on heat transfer aspect and any one multiphase reactor based on recent advances.		
7	Design experimental methodology to estimate time needed to heat a given fluid to design temperature		
	with a given heat resource.		
8	Designed any one heat transfer equipment on laboratory scale and demonstrate its working.		
9	Propose suitable heat exchanger for given operation/ process based rational reasoning.		
10	Enlist empirical correlations to estimate HTC in heat exchanger and report applicability.		
11	Enlist empirical correlations to estimate HTC in mechanically agitator vessel.		
12	Demonstrate effect and specific heat of fluid time needed to raise desired temperature by		
	experimental methodology		
13	Enlist possible ways to enhance HTC in a given heat exchange system.		
Terr	n Work		
Tern	n work will consist of the experiments listed below, which are to be performed in laboratory by the		
stude	ents		
1	To study temperature distribution and overall heat transfer coefficient, in parallel flow finned tube		
	heat exchanger.		

2	To study effectiveness and heat transfer rates in counter flow finned tube heat exchanger.		
3	To study temperature distril	oution, effectiveness, overall heat transfer coefficient, heat transfer rates	
	in double pipe heat exchang	er.	
4	To study Wilson plot in dou	ble pipe heat exchanger.	
5	To determine overall heat tr	ansfer coefficient, effectiveness for shell and tube heat exchanger.	
6	To determine number of tubes, pressure drop for shell and tube heat exchanger.		
7	Calculation of heat transfer	r coefficient, rate of heat flow and effectiveness in Double pipe heat	
	exchanger.		
8	Detailed flow arrangements	, design and drawing of double pipe heat exchanger	
9	Detailed design and drawing	g of shell and tube heat exchanger	
10	Detailed design and drawing	g of evaporator.	
11	Calculation of heat transfer	coefficient, No of tubes and rate of heat flow in shell and tube heat	
	exchanger		
12	Detailed design and drawing of agitated vessel.		
Text	t Books/References		
1	Holman, J.P., "Heat Tansfer", 9th edn. The McGraw-Hill Companies, 2008		
2	Dutta B. K., "Heat Transfer: Principles and Applications", PHI, 2001		
3	Kern D. Q., "Process Heat 7	Transfer", Tata McGraw-Hill Edition, 1997	
4	McCabe, W. L., Smith, J. C	., and Harriott, P., "Unit Operations of Chemical Engineering",	
	McGraw-Hill, 6th. Ed., 200	1	
	Richardson, J. F., and J. M.	Coulson: "Chemical Engineering," Butterworth Heinemann, Volume 6.	
5	Chapman, A.J. "Heat Transf	fer", 4th edn. Maxwell Macmillan International Edition, 1984.	
6	George E.Totten and M.A.H.Howes: Steel heat treatment handbook		
7	P.Mullinger and B. Jenkins: Industrial and process furnaces		
Sylla	abus for Unit Tests		
Unit	Test I	Units I, II, and III	
Unit Test II		Units IV, V, and VI	

Designation: Professional Core

Pre-requisite Courses: Heat transfer, Fluid mechanics, Thermodynamics, Material and energy balance calculations

Toophing Schome Ex			Examination Scheme		Credits Allot	ted
1	acting 50		Examination Scheme		Cituits Allo	lieu
Le	ectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Pr	actical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Term-work	:
To	otal	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Practical/Ora	1:01
			Practical/Oral	: 25 Marks	Total Credits	: 04
			Total	: 150 Marks		
Co	ourse Outo	comes:			•	
Af	ter comple	tion of the course stud	lents would be able to			
1	Evaluate	diffusivity and rate o	f diffusion.			
2	Evaluate	mass transfer coeffic	ients and understand interphase	se mass transfer	•	
3	3 Determine the height of transfer unit, number of transfer unit, in absorption column.					
4	Determin	Determine the humidity and rate of mass transfer in humidification.				
5	Estimate	Estimate rate and time of drying.				
6	5 Analyze type of crystallization and estimate the yield of crystallization.					
	L					
			Topics Covered			
U	NIT-I	Diffusion				(06 Hours)
		Molecular diffusion	in fluids: Steady state diffu	sion in fluids a	at rest and in	
		laminar flow, Stead	y state diffusion of A through	n non-diffusing	B, equimolar	
		counter diffusion, st	eady state diffusion in multico	mponent mixtu	re , molecular	
		diffusion in fluids,	diffusivity of liquids and gase	es, effect of ten	nperature and	

	pressure on diffusivity, diffusion in solids. Laws of diffusion and empirical	
	equations – Maxwell's law, Stefan's law, Winkle man's method.	
UNIT-II	Mass transfer Coefficient and Interphase Mass Transfer:	(06 Hours)
	a) Mass transfer coefficients: Mass transfer coefficient in laminar flow and in	
	turbulent flow. Relation of individual and overall mass transfer coefficient.	
	Theories of mass transfer. Mass, heat and momentum transfer analogies.	
	b) Interphase mass transfer. Equilibrium in mass transfer, two resistance	
	concept. diffusion between phases. Steady state co-current and counter current	
	processes. continuous crosscurrent, counter-current, crosscurrent cascade	
	operations and mass balances.	
UNIT-III	Absorption:	(06 Hours)
	Introduction to absorption, types of tower packing's, contact between liquid	
	and gas, pressure drop and limiting flow rates, material balances for each flow	
	, limiting gas-liquid ratio, rate of absorption, calculation of HTU, NTU and	
	HETP. Alternate forms of transfer coefficients and their relations. Tray	
	Efficiencies, absorption in plate columns, absorption with chemical reaction.	
	Equipment for absorption column.	
UNIT-IV	Humidification	(06 Hours)
	Vapor-liquid equilibrium, enthalpy for pure substances, definitions of humidity	
	terms, adiabatic saturation temperature, wet bulb and dry bulb temperatures,	
	study of humidity charts, Lewis relation, method of adiabatic humidification	
	and dehumidification. Equipment for humidification, cooling tower design.	
UNIT-V	Drying	(06 Hours)
	Basic principles of drying. equilibrium in drying. definitions of terms in drying,	
	types of moisture binding, rate of drying curve, mechanism of batch drying and	
	continuous drying, time requirement for drying, mechanism of moisture	
	movement in solids.	
	Equipment used for drying: Classification of dryers, solids handling in dryers,	
	equipment for batch and continuous drying processes: working principle of tray	
	driers, tower driers, rotary driers, spray driers. Concept of freeze drying	

UNIT-VI		Crystallization (06 Hours)		
		Introduction to the process, principal rate of crystallization, Mier's super-		
saturation theory, growth and properties of crystals, crystallization		saturation theory, growth and properties of crystals, crystallization rate,		
calculations of yield, mass and enthalpy balances. Equipment used in				
	crystallization.			
Proj	ect Bas	ed Learning		
1.	Prepar	e a model for any of the Mass transfer equipment.		
2.	Power	point presentation (seminar) on any topic of mass transfer and prepare a report.		
3.	Evalua	te efficiencies of different Gas-liquid contact equipment		
4.	With t	he help of this subject knowledge, write a guideline report on how you would app	oly your	
	concep	ts in industry.		
5.	Compa	re working and principles for different mass transfer operations.		
6.	Solve	numerical based on crystallization and humidification.		
7.	Write	a technical report on your visit to a process industry.		
8.	Solve old (last three years) GATE question papers with reference to Mass transfer-I subject.			
9.	Group discussion on the recent advances in mass Transfer equipment.			
10.	Technical interview based on the knowledge of Mass transfer.			
Terr	n Work	:		
Tern	n work	will consist of the experiments listed below, out of which any eight experiment	nts are to be	
perfo	ormed in	a laboratory by the students.		
1.	To calculate diffusion coefficient in Liquid-Liquid diffusion.			
2.	To calculate diffusion coefficient in still air			
3.	To stu	dy characteristics of Wetted Wall Column.		
4.	To cale	culate individual and overall interface mass transfer coefficient.		
5.	To estimate efficiency of cooling Tower.			
6.	To esti	mate rate of drying in tray drier/rotary drier		
7.	To stu	dy the crystallization process by air, water cooling and seeding.		

8.	Humidification and Dehumidification experiment.			
9.	To study agitated batch crysta	To study agitated batch crystallizer		
10.	Study of Spray drier			
Text	t Books/References			
1	Treybal R.E., Mass Transfer G	Operations, 3rd Ed., McGrawHill, 1981.		
2	McCabe, W. L., J. Smith, and	Harriot: "Unit operations of chemical engineering," Tata McGraw		
	Hill.			
3	King C. J. "Separation Techniques," McGraw Hill Publications			
4	Richardson, J. F., and J. M. Coulson: "Chemical Engineering," Butterworth Heinemann, Volume 1.			
5	E. L. Cussler, "Diffusion Mas	s Transfer in fluid systems " 3rd Ed. Cambridge Series in Chemical		
	Engineering.	Engineering.		
Sylla	Syllabus for Unit Tests			
Unit	t Test I	Units I, II, and III		
Unit Test II Units IV, V, and VI		Units IV, V, and VI		

CHEMICAL REACTION ENGINEERING

Designation: Professional Core

Pre-requisite Courses: Chemistry, Process heat transfer, Mass transfer, Fluid mechanics, Material and energy balance calculations.

Teaching Scheme		cheme	Examination Scheme		Credits Allot	ted
Le	ectures	: 03Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Pr	actical	: 02Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: -
To	otal	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Practical	: 01
			Practical/Oral	: 25 Marks	Total Credits	: 04
			Total	: 150Marks		
					I	
C	ourse Out	comes				
1	Define ra	tes of homogeneous c	hemical reactions and express	temperature dep	endent term of	rate equation
	with Arrł	nenius' law and other t	heories.			
2	Design ex	xperiments to analyze	and interpret the reaction progr	ession analysis	for chemical pro	ocesses.
3	Apply the rate expression and other analysis to design ideal reactors: batch, CSTR and plug flow.			OW.		
4	Optimize	thermal effects to o	ptimize reaction output for m	ultiple reaction	s, autocatalytic	and recycle
	processes.					
5	5 Define operating conditions to produce desired products from parallel and series chemical reactions.			ctions.		
6	Evaluate	effect of temperature	on reaction.			
	Topics Covered					
U	NIT-I	Chemical Kinetics				(06 Hours)
		Classification of re-	eactions; rate laws and stoid	chiometry; rela	tive rates of	
		reaction; reaction of	rder; rate limiting step; half l	ife; concentrati	on-dependent	
		term of a rate equ	ation; temperature-depender	nt term of a r	ate equation;	

Temperature dependency from Arrhenius law; Transition state theory; collision

	theory; rate equation using partial pressure and concentration; their			
	interrelation; searching for a reaction mechanism.			
UNIT-II	Interpretation of Batch reactor data	(06 Hours)		
	Interpretation of batch experimental kinetics data using integral and differential			
	analysis; constant volume batch reactor system; design equation for zero, first,			
	second and third order irreversible and reversible reactions; graphical			
	interpretation of these equations and their limitations; variable volume batch			
	reactors; design equation for zero, first and second order irreversible and			
	reversible reactions; graphical interpretation of their limitations.			
UNIT-III	Introduction to Reactor Design	(06 Hours)		
	Single ideal reactors under steady state conditions; design equations for batch;			
	mixed flow & plug flow reactor; development of rate expression for mean holding			
	time for a plug flow reactor; space time and space velocity; Introduction to Semi-			
	batch reactor.			
UNIT-IV	Isothermal flow reactors	(06 Hours)		
	Size comparison of reactor performance; sequences of reactors; reactors with			
	recycle; optimum size determination; reactors in series and parallel;			
	performance of infinite number of back mix reactors in series; back mix and			
	plug flow reactors of different sizes in series and their optimum way of staging;			
	optimum recycle ratio for auto -catalytic (recycle) reactors.			
UNIT-V	Design of reactors for Single and Multiple reactions	(06 Hours)		
	Parallel and consecutive reactions in batch; CSTR and PFR; qualitative			
	discussion about product distribution; quantitative treatment of product			
	distribution and reactor size; factors affecting such as choice; optimum yield,			
	conversion, selectivity, reactivity on consecutive and parallel reactions in			
	reactors.			
UNIT-VI	Non-Isothermal reactor for homogeneous reactor systems	(06 Hours)		
	Energy balances in reactors; adiabatic operations; non-adiabatic operations;			
	stability of reactors; non-isothermal homogeneous reactor systems; rates of			
	heat exchanges for different reactors; adiabatic operations for batch and			

		continuous reactors; optimum temperature progression; rate, temperature and			
		conversion profiles for exothermic and endothermic reactions.			
Text	t Books/	References			
1	Levens	Levenspiel O.: "Chemical Reaction Engineering", 3rd Edition, John Wiley and sons, New Delhi, India			
	2007.				
2	Fogler	H.S.: "Elements of Chemical Reaction Engineering", 4th Edition, Prentice Hall of	India, New		
	Delhi;,	India, 2006.			
3	Laidler	K.J.: "Chemical Kinetics", 3 rd Edition, Pearson Education Inc. UK 2013			
4	Smith J	.M. "Chemical Engineering Kinetics", 3 rd Edition, McGraw Hill, 1981			
Proj	ect Base	d Learning			
1.	Suggest	t best suitable reactor arrangement for zero, first and second order reaction.			
2.	Derive	the rate equations for various combinations of reactors.			
3.	Prepare	a model for any of the reactor.			
4.	Elabora	te in detail use of kinetics in equipment/reactor design.			
5.	With th	e help of this subject knowledge, write a guideline report on how you would apply y	our concepts		
	in indus	stry.			
6.	Group of	discussion on the recent advances in reaction engineering.			
7.	Write a	report on your visit to research and development laboratory of national/international	l repute.		
8.	Give fit	fteen minutes presentation (seminar) on particular topic and prepare a report.			
9.	Visit ch	nemical industry and prepare a detailed report on reactors used in industry.			
10.	Student	s have to study any five NPTEL videos related to chemical reaction engi	neering and		
	prepare	/present power point presentation.			
11.	Explain	n in detail use of kinetics in equipment/reactor design.			
12.	Prepare	a report on reactors which are newly introduced in the current year.			
*Stu	dents in a	a group of 3 to 4 shall complete any one project from the above list.			
Terr	n Work				

Terr	Term work will consist of the experiments listed below, which are to be performed in laboratory by the				
stud	students.				
1	Study of first order reaction.				
2	Study of PFR & CSTR combi	ination in second order reaction.			
3	Rate constant of hydrolysis of	f methyl acetate by dilute HCl.			
4	Hydrolysis of ester (e.g. ethyl	acetate) by alkali (NaOH).			
5	Study of CSTR combination i	in first order reactions.			
6	Determination of Arrhenius p	arameters.			
7	Rate constant for saponification of ethyl acetate with NaOH using CSTR				
8	Rate constant for saponification of ethyl acetate with NaOH at ambient cond				
	itions using PFR				
9	9 Rate constant for saponification of ethyl acetate with NaOH at ambient conditions using				
	(i) Isothermal batch reactor (ii) Isothermal CSTR.				
10	Study and operation of an adiabatic batch reactor.				
11	Use MATLAB software to simulate Batch / CSTR / Plug flow reactor data				
Syll	abus for Unit Tests				
Unit	Test I	Units I, II, and III			
Unit Test II		Units IV, V, and VI			

CHEMICAL PROCESS INSTRUMENTATION

Designation: Professional Core

Course Pre-requisites: Mathematics, Material science and engineering

Teaching scheme:	Examination scheme:	Credits allotted:	
Lectures : 3 Hour/Week	End Semester Examination: 60 Marks	Theory : 03	
Total : 3 Hour /Week	Internal Assessment : 40 Marks	Total Credits : 03	
	Total : 100 Marks		

Course Outcomes:

After completion of the course students will be able to

- **1.** To explicate the need of process instrumentation and process control in chemical industries.
- 2. To illustrate various pressure and strain measuring instruments.
- **3.** To elucidate spectrophotometry, colorimetry and conductometry
- 4. To describe nephelometry, turbidimetry, refractometry and chromatography methods.
- To develop an ability to use theorems to compute the Laplace transform, inverse Laplace transforms. To calculate the transfer functions for first order and second order systems.
- **6.** To give details various control action for first order and second order system.

Topics covered

UNIT-I	Introduction: Basic Concepts and characteristics of measurement system; various	(06 Hours)
	elements of instrument; performance characteristics.	
	Temperature measurement: Introduction, methods of temperature measurement	
	by expansion thermometers, filled system thermometers; electrical temperature	
	instruments; pyrometers; Calibration of Thermometers.	
	Level measurement: Displacers; ultrasonic; microwaves; laser light.	
UNIT-II	Pressure and strain measuring instruments: Introduction; classification; low,	(06 Hours)
	medium, and high pressure measuring instruments, pressure scales (units),	
	manometers, elastic element pressure gauges with pressure equations (using	
	bourdon tube, diaphragms, capsule, and bellows), transduction/ electrical sensors	

	with pressure equations (based on variable capacitance, resistance, and	
	inductance/reluctance-LVDT), force- balance transducers along with	
	mathematical equations, solid-state devices, thin-film transducers, digital	
	transducers, piezoelectric transducers, vibrating element sensors, pressure	
	multiplexer, calibration of pressure sensors using dead- weight tester, Mechanical,	
	optical, and electrical strain gauges.	
UNIT-III	Introduction to instrumental methods of analysis: General Introduction;	(06 Hours)
	classification of instrumental methods; spectroscopy, properties of	
	electromagnetic radiation, pH metry, Karl Fischer Titration.	
	Visible Spectrophotometry & Colorimetry: Deviation from Beer's law;	
	instrumentation applications; Molar compositions of complexes; examples.	
	Conductometry: Introduction, laws; conductance; measurements; types of	
	conductometric titrations; applications; advantages and disadvantages.	
UNIT-IV	Nephelometry and Turbidimetry: Introduction; theory; comparison with	(06 Hours)
	spectrophotometry; applications.	
	Refractometry: Introduction; Abbe refractometer; applications.	
	Chromatography: Introduction; types; theoretical principles; theories of	
	chromatography; development of chromatography; qualitative and quantitative	
	analysis; applications.	
	Gas Chromatography; Introduction, principles of gas chromatography, gas liquid	
	chromatography, instrumentation, evaluation, retention volume, resolution.	
	Branches of gas chromatography, applications and numerical.	
	High Performance (Pressure) Liquid Chromatography; Introduction, principles,	
	instrumentation, apparatus & materials, column efficiency and selectivity,	
	applications.	
UNIT-V	Process dynamics:	(06 Hours)
	Introduction; tools of dynamics analysis; ideal forcing function; input output	
	model; transfer function models; proportion of transfer function; poles & zeros of	
	transfer function with qualitative response; dynamic behavior of pure integrator;	

	pure gain; first order & second order systems (with or without dead time); physical		
	example of these systems.		
UNIT	-VI	Introduction to feedback control:	(06 Hours)
		Final Control Elements - Valve characteristics; Instrumentation symbols.	
		Introduction to Process Flow Diagram (PFD) and Piping & Instrumentation	
		Diagram (P&ID).	
		Control theory basics:	
		The control loops; process control terms; components of control loops; basic	
		control action i.e. on-off, P, I, D, PI, PD, PID for 1st order process control loops	
		and 2 nd order response.	
Projec	ct bas	ed learning:	
1.	Stu	dents have to visit chemical industry and prepare a detailed report on various instrum	ents used for
	proc	cess variable measurement.	
2.	. Students have to visit chemical industry and prepare a detailed report on various instruments used for		
	chemical analysis.		
3.	Watch NPTEL video and make report on various instruments used for process variable measurement.		
4.	Presentation on instruments used for process variable measurement.		
5.	Group discussions on instruments used for process variable measurement.		
6.	To find Transfer Function for 1 st order and 2 nd order Instrument or process.		
7.	Draw the Control Loop for HEfor different process variable control.		
8.	. Draw the Control Loop for Batch Reactor for different process variable control.		
9.	9. Draw the Control Loop for CSTR for different process variable control.		
*Students in a group of 3 to 4 shall complete any one or two projects from the above list.			
Text I	Books	s/References:	
1	S.K.Singh, "Industrial Instrumentation & Control", Tata McGraw Hill publishing company ltd, New		
	Dell	hi, 2000	
2	D. I	Pastranabis, "Principals of industrial instrumentation", 2nd edition, Tata McGraw 4	

	Hill publishing company ltd, New Delhi, 2003		
3	Eckman D.P. "Industrial Instrumentation", Willey Eastern Ltd, New Delhi, 1984.		
4	A.C. Shrivastav "Techni	ques in Instrumentation", New Delhi, 1984.	
5	W.Boltan, "Instrumentat	ion and Process Measurement", Orient Longman Ltd,	
	Hyderabad, 1st Edition,	1993.	
6	Willard H.H, "Instrumen	tal methods of analysis", 6th Edition, CBS Publication New Delhi 1986	
7	Galen W. Ewing, "Instr	umental Methods of Chemical Analysis", 5th Edition, McGraw Hill Book	
	Company,		
	Singapore, 1990		
8	D. A. Skoog, "Principal	of Instrumental Analysis", Southern Collage Publication, Japan 1984	
9	G. R. Chatwal, S.K. Anand, "Instrumental method of chemical analysis", 5th Edition, Himalaya		
	Publishing House,		
	Mumbai 2002.		
10	Ray Choudhuri and Ray Choudhuri "Process Instrumentation, Dynamics and control for Engineers",		
	1st Edition, Asian Books Pvt Ltd, New Delhi, 2003.		
11	B.G. Liptak, "Instrument Engineers Handbook", 4 th Edition, CRC Press, 2005.		
Syllabus for Unit Test:			
Unit T	'est -I	UNIT – I , II, III	
Unit T	nit Test -II UNIT – IV, V, VI		

SKILL BASED COURSE-IV: INDUSTRIAL HEATING SYSTEMS

Designation: Skill Development

Pre-requisite Courses: Chemical Engineering Thermodynamics, Heat Transfer, Particulate technology

Teaching Scheme		Examination Scheme		Credits Allotted
Practical	: 02 Hours/Week	Term-work (TW)	: 25 Marks	Practical : 01
Total	: 02 Hours/Week	Practical/Oral	: 25 Marks	Total Credits : 01
		Total	: 50 Marks	

Term Work

Term work will consist of the practicals based on the following topics. Any ten practicals are to be performed in laboratory by the students.

	Topics Covered		
1	Liquid Fired Thermic Fluid Heaters		
	Design principle, selection and characterization of liquid fuel and thermic fluid, Efficiency of		
	system, Control system for thermic fluid heaters, Operation and maintenance of liquid fired		
	thermic fluid heaters.		
2	Solid Fired Thermic Fluid Heaters		
	Design principle, selection and characterization of solid fuel and thermic fluid, Efficiency of		
	system, Control system for solid thermic fluid heaters, Operation and maintenance of solid fired		
	thermic fluid heaters.		
3	Boiler (Fire-Tube Boiler)		
	Design principle, Construction and working principle, Types of fire tube boilers, Selection		
	criteria, Operation and maintenance of fire tube boilers,		
4	Boiler (Water-Tube Boiler)		
	Design principle, Construction and working principle, Types of water tube boilers, Selection		
	criteria, Operation and maintenance of water tube boilers		

5	Furnaces
	Design principle, Classification and types of furnaces, Construction and working principle,
	Heating distribution within furnace, selection criteria for furnace. Operation and troubleshooting
	of furnaces.
6	Selection of Heating System for Industrial Purpose
	Selection criteria and factors to be considered, Characteristics of a good heating system, Risk
	barriers and uncertainty, Case studies.
Text Bo	oks/References
1	Y. V. Deshmukh, "Industrial Heating, Principles, Techniques, Materials, Applications, and Design", 1st
	edition, CRC Press 2005
2	H. Pfeifer, "Handbook of Heat Processing: Fundamentals - Calculations - Processes" 2nd edition, Vulkan-
	Verlag(2016)
3	J. G. Wünning, A.Milani,"Handbook of Burner Technology for Industrial Furnaces: Fundamentals -
	Burner – Applications" 2nd Edition, Vulkan-Verlag(2015)

INDIAN KNOWLEDGE SYSTEM					
Teaching scheme		heme	Examination scheme	Credits allot	ted
Theo	ory	: 02	End Semester Examination : -	Credits	: 02
Prace	tical	: -	Internal Assessment : 100	Total Credit	: 02
			Marks		
Tuto	rial	:-			
Cou	rse Obj	ectives:			
1.	To ser	nsitize the stu	dents about Indian culture and civilization	n including its	Knowledge
	System	n and Traditio	n.		
2.	To hel	p student to u	nderstand the knowledge, art and creative pra	actices, skills, a	and values in
	ancien	t Indian system	n		
3.	To hel	p to study the	enriched scientific Indian heritage.		
4.	To int	roduce the cor	ntribution from Ancient Indian system & trac	dition to mode	rn science &
	Techn	ology			
	1				
Cou	rse Out	comes: Afte	er learning this course students will be able t	o understand	
1	Conce	pts of Indian I	Knowledge System		
2	India's	s contribution	in Philosophy and Literature		
3	India's	s involvement	in Mathematics and Astronomy		
4	India's	s role in Medie	cine and Yoga		
5	India's	s influence in	Sahitya		
6	Conce	pts of Indian S	Shastra		
UNIT – IIntroduction to Indian Knowledge System(04 Hour		Hours)			
		Definition, C	Concept and Scope of IKS, IKS based approa	aches	
		on Knowled	ge Paradigm, IKS in ancient India and in mo	dern	
In		India			
UNI	T – II	Philosophy	and Literature	(04	Hours)

	Contributions by Maharishi Vyas, Manu, Kanad, Pingala,	
	Parasar, Banabhatta, Nagarjuna and Panini in Philosophy and	
	Literature	
UNIT - III	Mathematics and Astronomy	(04 Hours)
	Contribution of Aryabhatta, Mahaviracharya, Bodhayan,	
	Bhashkaracharya,	
	Varahamihira and Brahmgupta in Mathematics and Astrononmy	
UNIT -IV	Medicine and Yoga	(04 Hours)
	Major contributions of Charak, Susruta, Maharishi Patanjali and	
	Dhanwantri in Medicine and Yoga	
UNIT -V	Sahitya	(04 Hours)
	Introduction to Vedas, Upvedas, Upavedas (Ayurveda,	
	Dhanurveda, Gandharvaveda), Puran and Upnishad) and shad	
	darshan (Vedanta, Nyaya.Vaisheshik, Sankhya, Mimamsa, Yoga,	
	Adhyatma and Meditation)	
UNIT -VI	Shastra	(04 Hours)
	Introduction to Nyaya, vyakarana, Krishi, Shilp, Vastu, Natya	
	and Sangeet	
	1	1

Reference Books

1.Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru

2. Kapur K and Singh A.K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.

3. The Cultural Heritage of India. Vol.I. Kolkata:Ramakrishna Mission Publication, 1972.

4. Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.

5. Dr. R. C. Majumdar, H. C. Raychaudhuri and Kalikinkar Datta: An Advanced History of India

(Second Edition) published by Macmillan & Co., Limited, London, 1953.

6. Rao, N. 1970. The Four Values in Indian Philosophy and Culture. Mysore: University of Mysore.

7. Avari, B. 2016. India: The Ancient Past: A History of the Indian Subcontinent from c. 7000 BCE to CE 1200. London: Routledge.

8. Textbook on The Knowledge System of Bhārata by Bhag Chand Chauhan,

9. Histrory of Science in India Volume-1, Part-I, Part-II, Volume VIII, by Sibaji Raha, et al. National Academy of Sciences, India and The Ramkrishan Mission Institute of Culture, Kolkata (2014).

10. Pride of India- A Glimpse of India's Scientific Heritage edited by Pradeep Kohle et al. Samskrit Bharati (2006).

12. Vedic Physics by Keshav Dev Verma, Motilal Banarsidass Publishers (2012).

13. India's Glorious Scientific Tradition by Suresh Soni, Ocean Books Pvt. Ltd. (2010).

14.Kapoor, Kapil, Avadesh Kr. Singh (eds.) *Indian Knowledge Systems* (Two Vols), IIAS, Shimla, 2005