
COURES STRUCTURE & SYLLBUS FOR B. TECH. MECHANICAL SEMESTER- III & IV (CBCS 2023 COURSE AS PER NEP 2020 GUIDELINES)

Vision of the Bharati Vidyapeeth (Deemed to be University) College of Engineering is: *To be a World Class Institute for Social Transformation through Dynamic Education*

Missions of the Bharati Vidyapeeth (Deemed to be University) College of Engineering are:

- To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession & society.
- To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.
- > To practice and promote professional ethics, transparency and accountability for social community, economic & environmental conditions.

Goals of the Bharati Vidyapeeth (Deemed to be) University College of Engineering are:

- Recruiting experienced faculty.
- > Organizing faculty development programs.
- > Identifying socio-economically relevant areas & emerging technologies.
- Constant review &up gradation of curricula.
- > Up gradation of laboratories, library & communication facilities.
- > Collaboration with industry and research & development organizations.
- Sharing of knowledge, infra-structure and resources.
- > Training, extension, testing and consultancy services.
- Promoting interdisciplinary research.

Vision of the Mechanical Engineering Department is:

To develop, high quality Mechanical Engineers through dynamic education to meet social and global challenges.

Mission Statements of the Mechanical Engineering Department are:

- > To provide extensive theoretical and practical knowledge to the students with well-equipped laboratories and ICT tools through motivated faculty members.
- > To inculcate aptitude for research, innovation and entrepreneurial qualities in students.
- To acquaint students with ethical, social and professional responsibilities to adapt to the demands of working environment.

Program Educational Objectives (PEOs) of the B. Tech. Mechanical are:

Graduates will be able,

- > To fulfill need of industry and society with theoretical and practical knowledge.
- > To engage in research, innovation, lifelong learning and continued professional development.
- > To fulfill professional ethics and social responsibilities.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. *Modern tool usage*: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. *Environment and sustainability*: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. *Ethics*: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. *Individual and team work*: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. *Life-long learning*: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Statements of Programme Specific Outcomes (PSOs)

- *PSO1:* Apply the knowledge of thermal, design, manufacturing engineering and computational sciences to solve Mechanical Engineering problems.
- *PSO2:* Apply Mechanical Engineering principles for research, innovation and develop entrepreneurial skills.
- *PSO3:* Apply concepts of mechanical engineering to asses' societal, environmental, health and safety issues with professional ethics.

Sr. No	Category	Subject Code	Subject	Teaching Scheme (Hrs./Week)		F	Examin	ation S	cheme	(Marl	ks)		Cre	edits		
				L	Р	Т	ESE	IA	TW	PR	OR	Tota 1	TH	Pr/ Or	Tut	Total
1.	MJ	MJ1111301	Manufacturing Technology	3	2	0	60	40	25	25	-	150	3	1	-	4
2.	MJ	MJ1111302	Mechanics of Fluids	3	2	1	60	40	25	25	I	150	3	1	1	5
3.	MJ	MJ1111303	Thermodynamics-Principles	3	0	0	60	40	-	-	-	100	3	0	0	3
4.	MJ	MJ1111304	Strength of Machine Components	3	0	0	60	40	-	-	-	100	3	0	0	3
5.	MJ	MJ1111305	Mechanisms of Machines#	3	2	0	60	40	25	-	25	150	3	1	0	4
6.	SE	SE1111306	Programming in Python	0	2	0	-	-	25	25	I	50	0	1	0	1
			Total	15	8	1	300	200	100	75	25	700	15	4	1	20
7.	*MOOC	AE1111307	MOOC-I	-	-	-	-	-	-	-	1	-	-	-	-	2
8.	*VAC	VA1111308	VAC-I	2	-	-	-	100	-	-	-	100	2	-	-	2

B. Tech. (Mechanical Engineering): Semester–III (CBCS 2023 Course as per NEP 2020 Guidelines)

#: Course with theory paper of 4 hrs.; * Mandatory Additional Courses

B. Tech. (Mechanical Engineering): Semester–IV (CBCS 2023 Course as per NEP 2020 Guidelines)

Sr.		Subject		Teac	hing Sc	heme		Exami	nation	Schem	e-Mar	ks		Cr	edits	
No	Category	Code	Subject	L	Р	Т	ESE	IA	TW	PR	OR	Total	TH	Pr/ Or	Tut	Total
1.	MJ	MJ1111401	Science of Engineering Materials	3	2	0	60	40	25	-	25	150	3	1	0	4
2.	MJ	MJ1111402	Theory of Machines	3	0	1	60	40	-	-	-	100	3	0	1	4
3.	MJ	MJ1111403	Thermodynamics- Applications	3	2	-	60	40	25	-	25	150	3	1	0	4
4.	MJ	MJ1111404	Hybrid Electric Vehicles	3	-	I	60	40	I	-	-	100	3	0	0	3
5.	MJ	MJ1111405	Machine Design & Analysis-I [#]	3	2	-	60	40	25	-	25	150	3	1	0	4
6.	SE	SE1111406	Solid Modeling	-	2	I	-	I	25	25	-	50	0	1	0	1
			Total	15	8	1	300	200	100	25	75	700	15	4	1	20
7.	*AC	AC1113407	Indian Knowledge System	2	-	-	-	50	-	-	-	50	2	-	-	2
8.	*EC	EC1111408	Social Activity	-	-	-	-	-	-	-	-	-	-	-	-	2

Course Code	Definitions
AC	Audit Course
AE	Ability Enhancement Course
BC	Basic Chemistry Course
BM	Basic Mathematics Course
BP	Basic Physics Course
CC	Co-curricular Courses
EC	Extra-Curricular Course
EE	Electrical Engineering
ES	Engineering Science Course
ESE	End Semester Examination
GE	General Elective Course
ID	Inter-disciplinary Course
L	Lecture
MD	Multidisciplinary Course
MI	Minor Course
MJ	Major (Core) Course
MOOC	Massive Open Online Course
0	Oral
OE	Open Elective Course
Р	Practical
PC	Practical Courses
RP	Research I Project Course
SE	Skill Enhancement Course
Т	Tutorial
TW	Term Work
UH	Course Related to Universal Human Values
VAC	Value Added Course
VE	Vocational Enhancement Course
VS	Vocational Skill Courses

Course Codes and Definitions

Designation of	Manufacturing Technology						
Course	(Course Co	de: MJ1111301)					
Teaching Sche	eme	Examination Sche	eme	Credits Allotted			
Theory:-03Hou	rs/Week	End Semester Examination	60 Marks	03			
Practical: - 02 H	ours/ Week	Internal Assessment	40 Marks	05			
		Term Work and Practical	50 Marks	01			
		Total	150 Marks	04			
Course	The student s	hould have basic knowledge of					
Prerequisites:	1. Mechanie	cal Engineering Systems.					
	2. Machinin	ng Processes.					
Course	The student s	hould					
Objectives:	1. To acquir	e knowledge of Foundry Technolog	gy.				
	2. To acquir	e the knowledge of hot working an	d cold working p	processes.			
	3. To acquir	e the knowledge of lathe, drilling, n	nilling, and abras	ive machining.			
Course	The students	should be able to-					
Outcomes:	1. Understar	nd the pattern making and mold ma	king.				
	2. Understan	nd the various casting processes and	apply the best	casting process for a			
	specific pr	oduct.					
	3. Understan	nd the hot working and cold working	g processes and	apply the min			
	Manufactu	ring.					
	4. Understan	nd different operations on lathe mad	chine and apply	them to create the job.			
	5. Understar	d different operations on drilling,	milling machine	es and			
	Apply the	Apply them to create the job.					
	6. Understar	d variousgrindingmachinesandplast	icmoldingmachi	nesand apply			
	Them for a	create the shape.					

Unit-I	Pattern and Mould Making	(06 Hrs.)			
Introductio	Introduction to casting, Foundry Layout, Foundry departments and sections, Pattern and pattern making,				
Design and	allowances for patterns, Color codes for patterns, Storage of patterns.				
Mouldings	and core sands, Sand control Test, Core and core making-Introduction, Core making	ıg			
Procedure,	Types of cores, Core print, Core boxes. Mould and mould making- Mould	ing Methods,			
Moulding	processes, Design of Gating System.				
Unit-II	Sand Casting and Die Casting Practice	(06 Hrs.)			
Sand Cast	ing Practice: Melting furnaces and their selection, Cupola furnace, Induction melti	ng furnaces,			
Advantage	s, Limitations, applications, pouring practice and equipment's, Ladle technology	, Strike out,			
Fettling, C	leaning and Surface preparation of castings, Defects in castings.				
Die Castin	g Practice: Pressure and gravity diecasting, Shellmould casting, Investment casting,				
Continuous	s casting, centrifugal casting, Applications, Merits, and limitations.				
Unit-III	Hot and Cold Working Processes	(06 Hrs.)			
Hot Wor	Hot Working Processes: Principle-rolling, forging-drops, press, upset. Rolling, forging-extrusion,				
drawing, spinning, Angle of Contact of rolling, effect of hot working.					
Cold Working Processes: Cold rolling, swaging, forges extrusion-forward back ward impact. Roll forging,					
tube drawi	tube drawing, wire drawing, spinning, shot peening, high energy rate forming, Stresses in wiredrawing				
operations					

Unit-IV **Theory of Metal Cutting** Introduction, function, types, construction, accessories, operations, thread cutting, single and multi-start thread cutting, different tools, tool materials, Tool Geometry- Single Point cutting tool, Tool Wear and Tool Life, Mechanics of Metal cutting-Merchant's Circle Diagram, concept of speed, feed, depth of cut. Introduction to Boring Machines- general arrangement and nature of work done.

Unit-VDrilling and Milling Machines(0)	(06 Hrs.)			
Drilling Machines: Fundamentals of drilling process, twist drill geometry, tool holders, Types of drilling				
machines, drilling operations. Types of drills, reaming process.				
Milling Machines: Fundamentals of milling process, cutters-types and geometry, Operations				
performed On milling machines. Dividing head, methods of indexing.				
Unit-VI Abrasive Machining Processes, Plastics & Plastic Moulding (0)	(06 Hrs.)			
Abrasive Machining Processes: Abrasive machining, abrasives -types, size and geometry,	Grinding,			
grinding wheels, wheel marking, wheel selection. Wheel mounting. Types of grinding machines, grinding				
faults, Honing, lapping, super finishing, buffing, burnishing process.				
Plastics & Plastic Moulding: Moulding characteristics of plastic, Moulding process- compression,				

transfer and injection blow moulding. Mould design- Materials and construction, bulk factor, shrinkage, Moulding parameters, moulding machines, extruders.

List of Experiments: (Any Eight)

- 1. Moulding and core sand testing (Clay content test, moisture content test etc).
- 2. Strength of Green sand mould and greens sand core.
- 3. Mold Making Practice.
- 4. Job on drilling, reaming, tapping.
- 5. Casting of component by using green sand molding / Die casting.
- 6. Individual job on center Lathe.
- 7. Study of dividing indexing mechanism on milling machine.
- 8. Gear cutting job on Milling Machine.
- 9. Study and demonstration of Grinding Machines.
- 10. Job on Grinding Machine.
- 11. Job on Plastic Molding Machine.

Text Books:

- 1. O.P.Khanna, A textbook of Foundry Technology, Dhanpat Rai and Sons
- 2. P.C.Sharma, Production Engineering, S. Chand Publications
- 3. R.K.Jain, Production Technology, Khanna Publishers

Reference Book

- 1. P.N.Rao, Manufacturing Technology-Vol1, McGrawHillEducation(India)Private Limited
- 2. P.N.Rao, Manufacturing Technologyp, Vol-II, McGrawHillEducation (India) PrivateLimited
- 3. G.R.Nagpal, Tool Engineering and Design, Khanna Publishers
- 4. B.S.Raghuwanshi, Workshop Technology, Vol-II, Dhanpat Rai & Co.
- 5. Hajra Chaudhari, Workshop Technology, Vol.-II
- 6. Roy A. Lindberg, Process & Materials of Manufacture, PHI
- 7. E.P.DeGrmo, J.T.BlackandA.Kosher, Materialandprocesses inmanufacturing, PHI

(06 Hrs.)

8. HMT Handbook, Production Technology, TMH

Project Based Learning:

Followingisthelistoftopicsforprojectbasedlearning(NotLimitedto)basedonthesyllabus contents:

- 1 To develop a pattern of any component using different types of material.
- 2 To develop a core part by using different types of materials.
- 3 To develop a demonstration model of gating system for any mechanical component.
- 4 To develop a demonstration model of Cupola furnace
- 5 To develop a demonstration model of pouring equipment's.
- 6 To prepare a flow chart for investment casting process
- 7 To develop a demonstration model of centrifugal casting
- 8 To develop a demonstration model of wire drawing process
- 9 To develop a demonstration model of mechanical press
- 10 To develop a demonstration model of short penning process
- 11 To develop a demonstration model of different types of rolling mills
- 12 Case study on different types of tools for thread cutting operations
- 13 To prepare a chart on concept of single point cutting tools& its geometry
- 14 To develop a demonstration model of mini bench tapping machine
- 15 Todevelopademonstrationmodelofmillingmechanismsforvertical/horizontalmovement
- 16 To develop a demonstration model of indexing mechanism
- 17 To develop a demonstration model of plastic molding machine
- 19 To develop a demonstration model of buffing machine
- 20 To develop a demonstration model of abrasive belt grinder

Unit Test-

Unit Test-I	Unit-I, II,III
Unit Test-II	Unit- IV, V, VI

Designation of Course Course Code	Mechanics of Fluids (Course Code: MJ1111302) C202				
Teaching Scheme	Examination Schen	Credits Allotted			
Theory: 03 Hours/ Week	End Semester Examination	60 Marks	04		
Tutorial: 01 Hour/ Week	Internal Assessment	40 Marks	04		
Practical: 02 Hours/ Week	Term Work and Practical	50 Marks	01		
	Total	150 Marks	05		

Course	1. Engineering Mathematics			
	2. Engineering Physics			
Prerequisites: -				
	3. Engineering Mechanics			
Course	To provide knowledge about			
Objectives: -	1. Properties of fluids, concepts of fluid statics, kinematics & dynamics			
	. Concepts of laminar & turbulent fluid flows			
	. Flow around immersed bodies and boundary layer flow			
	4. Dimensional analysis			
Course	Course On completion of the course, students will be able to-			
Outcomes: - 1. Understand properties of fluids and analyze concepts of fluid statics.				
	2. Understand concepts related to fluid kinematics and analyze practical problems.			
	3. Understand concepts related to fluid dynamics and analyze practical problems.			
	4. Understand concepts related to laminar flow, flow around immersed bodies and			
	analyze practical problems.			
	5. Understand concepts related to flow through pipes, dimensional analysis and			
	analyze practical problems.			
	6. Understand concepts related to boundary layer theory and analyze practical			
	problems.			

Unit-I	Properties of Fluids & Fluid Statics	(08 Hrs.)			
Properties	Properties of Fluid: - Definition of fluid, concept of continuum, Density, Specific Weight, Specific				
Gravity, Dy	namic Viscosity, Kinematic Viscosity, Newton's law of viscosity, types of f	fluid, Surface			
Tension, Cap	pillarity, Compressibility.				
Fluid Static	s: Hydrostatic law, Pascal's Law, Pressure at a point, Total Pressure, Centre of pre	essure, Liquid			
pressure on	a plane (Horizontal, Vertical, Inclined) & Curved surfaces, Archimedes Prin	nciple.			
Unit-II	Fluid Kinematics	(08 Hrs.)			
Description	of fluid motion-Eulerian and Langragian approach, Types of flow (steady, unste	ady, uniform,			
non-uniform	, laminar, turbulent, One, Two and Three dimensional, compressible, in	compressible,			
rotational, Ir	rotational), Continuity equation in Cartesian co-ordinates, flow net, Control volu	ume, Material			
derivative an	nd acceleration, Visualization of flow field (Stream, Path and Streak line), str	eam function			
and velocity	potential function.				
Unit-III	Fluid Dynamics	(08 Hrs.)			
Linear mom	Linear momentum equation using differential approach, Introduction to Navier-Stoke's Equation, Euler				
equation of motion. Derivation of Bernoulli's equation along a streamline, application of Bernoulli's					
equation to	equation to Pitot tube, Venturimeter, Orifice meter. Introduction to CFD Methodology.				
Unit-IV	Laminar Flow & Flow around Immersed Bodies	(08 Hrs.)			

Definition, relation between pressure and shear stresses, laminar flow through round pipe. Forces on immersed bodies: -Lift and Drag, Classification of Drag, Flow around circular cylinder and airfoil, Development of lift on airfoil.

Unit-V	Flow Through Pipes & Dimensional Analysis	(08 Hrs.)			
Energy losses through pipe-Major and Minor losses, Pipes in series and parallel, Darcy-Weisbach					
equation, Moody diagram, Concept of HGL and THL or TEL. Syphon, Transmission of power, Water					
hammer in p	hammer in pipes				
Dimensiona	Analysis: Dimensions of physical quantities, dimensional homogeneity, Ray	yleigh's			
method, Buckingham pi Theorem, Important dimensionless numbers.					
Unit-VI	Boundary Layer Flow	(08 Hrs.)			
Boundary layer, Laminar and Turbulent flow, Velocity distribution, Development of boundary layer on a					
flat plate, Boundary layer thickness-displacement, Momentum and Energy, Laminar sub layer, Separation					

of boundary layer and Methods of controlling, Introduction to compressible fluid flow.

Term Work

Term work shall consist of following **eight** experiments. Hand calculations must be confirmed through a computer programme using any programming language.

- 1. Study of Pressure Measuring Devices.
- 2. Measurement of Viscosity using Redwood Viscometer.
- 3. Stability of Floating Bodies and Optimum Loading Capacity.
- 4. Verification of Modified Bernoulli's Equation.
- 5. Calibration on Venturi meter.
- 6. Calibration of Orifice meter.
- 7. Laminar and Turbulent Flow by Reynolds's Apparatus.
- 8. Discharge over Notches.
- 9. Study of Minor Losses due to Pipe Fitting.

Assignment:

Numerical and/or theory questions on following topics from previous year question papers of GATE/ESE Mechanical Engg. examinations.

- 1. Fluid statics
- 2. Fluid kinematics.
- 3. Venturimeter & orifice meter.
- 4. Laminar flow and flow around Immersed bodies.
- 5. Flow through pipes and Dimensional analysis.
- 6. Boundary conditions for the velocity profiles.

Text Books

- 1. Dr. R.K. Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines ", Laxmi Publication Pvt. Ltd., New Delhi.
 - 2. R.K. Rajput, A Textbook of Fluid Mechanics and Hydraulic Machines, S. Chand & Company Ltd. New Delhi.

Reference Books:

- 1. Streeter V. L. and Wylie E. B. Fluid Mechanics McGraw Hill International Book Co.
- 2. Yunus Cengel, Jhon Cimbala, Fluid Mechanics, Tata McGraw Hill, New Delhi.

- 3. Streeter & Wylie, Fluid Mechanics, Tata McGraw Hill.
- 4. Frank White, Fluid Mechanics, McGraw Hill.
- 5. Dr. P.N. Modi and Dr. S.M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House.
- 6. Garde R. J. and Mirajgaonkar, Engineering Fluid Mechanics, Nem Chand & Bros, Roorkee, SCITECH, Publication (India) Pvt. Ltd.

Project Based Learning:

Following is the list of topics for project based learning (Not Limited to) based on the syllabus contents:

- 1. To demonstrate Pascal's law through real life application such as hydraulic jack, hydraulic press, hydraulic lift, etc.
- 2. To demonstrate Archimedes's Principle through real life application.
- 3. To prepare an experimental setup for measurement of viscosity of different oils.
- 4. To demonstrate different types of fluid flow through Reynold's experiment.
- 5. To prepare a chart on real life application of different types of fluid flows and its characteristics.
- 6. To measure the flow velocity using Pitot tube.
- 7. To prepare a chart on real life application on fluid flow measuring devices.
- 8. To develop demonstration model for turbulent and laminar flow.
- 9. To develop demonstration model of simple viscous damper for earthquake resistance.
- 10. To prepare a chart for industrial applications of Pascal's law.

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course	Thermodynamics Principles (Course Code: MJ1111303)			
Teaching Scheme	Examination Scheme Credits Allotted			
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	- 03	
Practical: - 00 Hours/ Week	Internal Assessment	40 Marks		
	Total	100 Marks	03	

Course	1. Engineering Mathematics.			
Prerequisites:	2. Engineering Physics.			
Course	To provide knowledge about			
Objectives: -	1. Laws of thermodynamics & their applications.			
	2. Properties of pure substances & vapor processes.			
	3. Fuels and concepts of combustion.			
Course	On completion of the course, students will be able to-			
Outcomes: -	1. Understand concepts of first law of thermodynamic and its application.			
	2. Understand concepts second law of thermodynamics, entropy and availability.			
	3. Apply the knowledge of Properties of steam for different vapor Processes.			
	4. Apply the knowledge of properties of steam for different power cycles.			
	5. Understand the different air standard cycles and analyze it.			
	6. Understand the different type of fuels, concepts of combustion and analyze exhaust			
	gas composition.			

Unit-I	First Law of Thermodynamics	(06 Hrs.)		
Introduction	Introduction of thermodynamics, Review of basic definitions, (State, Process, Cycle, Path, Quasi- static			
process, pat	h fiction and point function, Equilibrium), energy and work transfer, z	eroth law of		
thermodynar	nics, statement of first law of thermodynamics, Joule's experiment, Limitations	of first law of		
thermodynam	nics.			
Reversibility	and Irreversibility, Applications of first law to flow and non-flow processes and	cycles. Steady		
flow energy	equation and its application to different devices (Boiler, Diffuser, Turbine	, Compressor,		
Condenser, t	hrottling process), PMM-I.			
Unit-II	Second Law of Thermodynamics, Entropy and Availability	(06 Hrs.)		
Heat engine,	Heat engine, refrigerator and heat pump, Kelvin-Planck's statement & Clausius statement, equivalence of			
Kelvin-Planc	Kelvin-Planck's and Clausius statements, perpetual motion machine of second kind (PMM-II), Carnot cycle			
& Carnot hea	at engine.			
Entropy: Cl	ausius Theorem, Entropy as a property, second law analysis for entropy, Claus	ius inequality,		
principle of	increase of entropy, irreversibility, Temperature - Entropy relation,	Third law of		
thermodynam	thermodynamics.			
Availability: High- and low-grade energy, available and unavailable energy, loss of available energy due				
to heat transfer through a finite temperature difference.				
Unit-III	Properties of Pure Substances and Vapor Processes	(06 Hrs.)		

Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-v, T-s and Mollier diagram for steam, use of P-V, T-S, H-S diagrams for Pure substance, Dryness fraction and its determination, Study of steam calorimeters (Barrel, Separating, Throttling, and combined).

Non flow and steady flow vapor processes, constant Pressure Process, constant volume Process, constant temperature Process, Isentropic Process, Polytrophic Process, Hyperbolic Process, work transfer & heat transfer.

(06 Hrs.)

Unit-IV Vapor Power Cycles

Carnot cycle, Rankine cycle, Comparison of Carnot cycle and Rankine cycle, Efficiency of Rankine cycle, Relative efficiency, Performance parameters of vapor power cycle, Effect of operating variables on Rankin cycle (Superheating, Boiler pressure, condenser pressure).

Unit-V	Air Standard Cycles	(06 Hrs.)
Analysis of Air standard cycle, Efficiency and Mean Effective Pressure, Carnot Cycle, Otto Cycle, Diesel		
cycle, Dual cycle, Comparison of cycles, Atkinson Cycle, Ericsson Cycle, Brayton cycle, Sterling Cycle		
Unit_VI	Fuels and Introduction to Combustion	(06 Hrs)

Unit-VI	Fuels and Introduction to Compusition	(00 Hrs.)	
Solid-Biomass, Coal types, liquid: petrol, diesel, bio-oil, their Application, Gas: Bio-gas, low calorific value			
gases, LPG, CNG, and their application. Properties of fuels, Mass fraction, mole fraction, combustion			
equation, theoretical air, excess and deficient air, stoichiometric and actual air to fuel ratio, Measurement of			
calorific valu	e of fuels, analysis of products of combustion, gravimetric and volumetric ana	lysis and their	

Text Books

- 1. V. P. Vasandani and D. S. Kumar, Heat Engineering Metropolitan Book Company, New Delhi.
- 2. R S Khurmi and J K Gupta, Textbook of Thermal Engineering, S Chand publications.

Reference Books

1. P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications.

conversions, method to determine flue gas analysis - CO, CO₂, O₂, HC, NO_x, smoke.

- 2. Y. A. Cengel & M.A. Boles, Thermodynamics -An engineering approach, Tata McGraw Hill Publications.
- 3. Rayner Joel, Engineering Thermodynamics, ELBS Longman.
- 4. R. K. Rajput, Engineering Thermodynamics, Laxmi Publications.
- 5. Kothandarman & S. Domkundwar, "Thermal Engineering" Dhanpat Rai and Sons.
- 6. P. L. Ballaney, Thermal Engineering, Khanna Publications.

7. **Project Based Learning**

Following is the list of topics for project based learning (Not Limited to) based on the syllabus contents:

- 1. To demonstrate steady flow energy equation for engineering applications such as heat exchangers, turbo machinery, boiler, etc.
- 2. To demonstrate first law of thermodynamic by using Joule's experiment.
- 3. To demonstrate first law of thermodynamic through real life application such as heating of water using a cook stove, operation of a boiler, operation of a turbo machinery, etc.
- 4. To demonstrate second law of thermodynamic through real life application. (Kelvin-Planck's statement)
- 5. Demonstration second law of thermodynamic through real life application. (Clausius statement)
- 6. To demonstrate Boyle's law.

- 7. To demonstrate Charles's law.
- 8. To prepare a chart on identification of gas/vapour processes in various real-life applications such as boiler, steam turbine, gas turbine, IC engine cylinder, etc.
- 9. To prepare a chart on comparison among different air standard cycles for given conditions.
- 10. To determine calorific values of different types of solid and liquid fuels.

Unit Test

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course	Strength of Machine Components (Course Code: MJ1111304)			
Teaching Scheme	Examination Scheme Credits Allotted			
Theory:-03Hours/Week	End Semester Examination	60 Marks	- 03	
	Internal Assessment	40 Marks		
	Total	100Marks	03	

Course	1. Engineering Mathematics	
Prerequisites:-	2. Engineering Mechanics	
1 rerequisites.	3. Engineering Science	
Course	1. Understand simple and principal stress and strain	
Objectives:-	2. Able to find principal stresses on any oblique plane by analytical and graphical method.	
	3. Able to draw shear force and bending moment diagram and find slope and deflection of beam	
	4. Able to draw bending stress and shear stress diagram at different cross section I and T section beam.	
	5. Able to find stresses in shaft in torsional, combined torsional and bending, combined torsional and axial loading.	
	6. Able to solve problems on strain energy and Euler's column.	
Course	On completion of the course, students will be able to	
Outcomes:-	1. Understand the concept of simple stress and strain and apply to find it for simple	
	component.	
	2. Understand the concept of principal stress and analytical and graphical by Mohr	
	circle; and apply it to find stresses on any oblique plane inclined to normal plane.	
	3. Understand the concept of shear force and bending moment and apply it to find	
	shear force diagram and bending moment diagram for any loading condition on	
	simply supported beam and cantilever beam.	
	4. Understand the concept of pure bending and shear and apply it to find bending stress and shear stress diagram of I and T section of beam.	
	5. Understand the concept of Torsion in shaft and apply it to find shaft diameter for	
	different loading condition.	
	6. Understand the concept of column theory and strain energy and apply it for loading condition.	
	Touching condition.	

Unit-I	Simple Stress and Strain	(06 Hrs)		
Load, Dir	Load, Direct or normal stress, Direct strain, Sign convention for direct stress and strain, Elastic			
materials,	materials, Hooke's law, Modulus of elasticity - Young's modulus, Tensile test, Ductile materials,			
Brittle ma	Brittle materials, Poisson's ratio, Application of Poisson's ratio to a two-dimensional stress system,			
Shear stress, Shear strain, Modulus of rigidity, Relationship Between E,G and K, Allowable working				
stress-factor of safety, Thermal stresses in plane and composite members.				
Unit-II	Principal Stresses, Theories of Failure	(06 Hrs)		

Principal Stresses: Introduction to principal stresses with application, Transformation of Plane Stress, Principal Stresses, and planes (Analytical method and Mohr's Circle), Stresses due to combined Normal and Shear stresses.

Theories of Elastic failure: Introduction to theories of failure with application, Maximum principal stress theory, Maximum shear stress theory.

Unit-III Shear Force and Bending Moment Diagram; Slope and Deflection (06 Hrs)

Types of supports and beams, shear force (S.F.), bending moment (B.M.), S.F. and B. M. sign convention, S.F. and B.M. diagrams for beams carrying different loading conditions. Points of contra flexure.

Introduction, Simple bending theory, Neutral axis, Section modulus, slope and deflection for S.S.B. and C.B., Double integration method (Macaulay's method) for S.S.B. and C.B.

(06 Hrs)

(0(IIma))

(06 Hrs)

Unit-IV Bending and Shear Stress in Beam

Bending stresses: Theory of simple bending, assumptions, derivation of flexural formula, second moment of area of common cross sections (I and T) with respect to centroidal and parallel axes, bending stress distribution diagrams, moment of resistance and section modulus.

Shear stresses: Concept, derivation of shear stress distribution formula, shear stress distribution diagrams for common symmetrical sections, maximum and average shears stresses.

Unit-v	10151011	(00 HIS)
Simple to	rsion theory, Polar second moment of area, Shear stress and shear strain in sh	afts, Section
modulus,	Torsional rigidity. Strain energy in torsion, Power transmitted by shafts. Stre	sses in solid
circular sł	haft- Torsional load, combined torsion and bending loads.	

Unit-VI | Euler's Columns and Strain Energy

Concept of buckling of columns, derivation of Euler's formula for buckling load for column with hinged ends only, concept of equivalent length for various end conditions, limitations of Euler's formula, Rankin's formula, safe load on columns.

Strain energy: Strain energy due to axial load(gradual, sudden and impact), Strain energy due to self-weight.

Textbooks

1. A text book of strength of material by R. K. Bansal

Reference Books

Unit V Torsion

- 1. V. B. Bhandari, Design of Machine Elements, Tata McGraw Hill Publication
- 2. J. E. Shigley, Mechanical Engineering Design, McGraw Hill
- 3. R. Subramanian strength of Material
- 4. S Ramamrutham, Strength of Material
- 5. R. K Rajput, Strength of Material

Project Based Learning

Followingisthelistoftopicforprojectbasedlearning(NotLimitedto)basedonthesyllabus contents:

- 1. To prepare demonstration model of cantilever beam for the study of deflection in it.
- 2. To prepare demonstration model of simply supported beam for the study of deflection in it.
- 3. To prepare demonstration model of Overhang beam for the study of deflection in it.
- 4. To prepare the demonstration model on relation between E, G, K (Stress- strain)
- 5. To prepare demonstration model for studying strain energy with consideration of various conditions like impact load, sudden load, gradual load.
- 6. To prepare the demonstration model on concepts used in Principal Stresses & planes.

- 7. To prepare the demonstration model on concept use in Mohr's Circle method. (Programming simulation)
- 8. To prepare the demonstration model on finding bending stress for I cross-sections. (Programming simulation)
- 9. To prepare the demonstration model on concept use in solid &hollow shafts. (Programming simulation)
- 10. To prepare the demonstration model of Euler's formula for buckling load. (Programming simulation)

Unit Tests

Unit Test-I	Unit-I,II,III
Unit Test-II	Unit-IV,V,VI

Designation of Course	Mechanisms of Machines (Course Code: MJ1111305)			
Teaching Scheme	Examination Scheme Credits Allotted			
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03	
Practical: - 02 Hours/Week	Internal Assessment	40 Marks	05	
	Term Work and Oral	50 Marks	01	
	Total	150 Marks	04	

Course	1. Engineering Mathematics
Prerequisites:-	2. Engineering Physics
	3. Engineering Mechanics
Course	1. To make the students conversant with kinematic analysis of mechanisms
Objectives:-	applied to real life and industrial applications.
	2. To develop the competency to analyse the velocity and acceleration in
	mechanisms using analytical and graphical approach.
	3. To develop the competency to analyse the friction clutches, Brakes,
	dynamometer and flywheel.
Course	1. Understand the fundamental concept of Lower pair mechanisms and apply to
Outcomes:-	real life and industrial applications.
	2. Understand the basic concept of kinematic analysis and evaluate forces acting
	on reciprocating engine by graphical and analytical method.
	3. Understand the concept of velocity and acceleration of any planar mechanism
	and analyze it graphically by using relative velocity - acceleration method and
	ICR method, Coriolis component of acceleration.
	4. Understand the concept of friction and apply it in application of clutches.
	5. Apply the concept of friction to analyse different parameter in Brakes and
	Dynamometer
	6. Understand the fundamental concept of Turning moment diagram and
	flywheel; and evaluate coefficient fluctuation speed and energy.

Unit-I	Mechanisms with Lower Pair	(06Hrs.)	
Introductio	Introduction, Pantograph, Straight line mechanisms- Exact and Approximate, Hook Joint, Double		
Hook's Joi	nt, Steering gear mechanisms: Condition for correct steering, Davis steering ge	ar mechanism,	
Ackerman	n steering gear mechanism. Theory and analysis of Compound Pendulum	,	
Concept of	equivalent length of simple pendulum, Bifilar suspension, Trifiler suspension		
Unit-II	Inertial Forces in Reciprocating Parts	(06Hrs.)	
Analytical	method for displacement, velocity and acceleration analysis of slider crank	s Mechanism.	
Dynamics	of Reciprocating Engines: Two mass statically and dynamically equival	ent system,	
Correction	couple, static and dynamic force analysis of reciprocating engine mechanism		
Unit-III	Kinematic Analysis of Mechanisms: Graphical Methods	(06 Hrs.)	
Relative Velocity Method: Relative velocity of a point on a link, Angular velocity of a link, Sliding			
velocity, V	elocity polygons for simple mechanisms.		
Relative Acceleration Method: Relative acceleration of a point on a link, Angular acceleration of a			
link, Acceleration polygons for simple mechanisms.			
Instantaneous Centre of Rotation(ICR)Method(limit to only 6 link mechanisms)- Kennedy's			
Theorem, I	Theorem, Body and space centrode.		

Unit-IVFriction Clutches(06 Hrs.)

Friction: Friction in turning pair, friction circle, friction axis, friction in slider crank mechanism.

Pivot and collar friction.

Friction clutches- design considerations, Classification of Clutches, torque transmitting capacity of – Single plate and multi-plate clutch, cone clutch and centrifugal clutch

Unit-V Brakes and Dynamometers

(06 Hrs)

Brakes-Introduction, Classification of brakes, material for brake lining, types of brakes, braking torque of - shoe brakes, internal shoe brake, disc brake.

Dynamometer-Types of dynamometers, brake power of absorption and transmission type dynamometers – pronny brake, rope brake.

Unit-VI Turning Moment Diagrams and Flywheel

(06 Hrs.)

Introduction, Turning Moment Diagrams for different types of Engines, Fluctuations of Energy and Speed of Crankshaft, Coefficient of fluctuation of Energy and speed.

Flywheel-Introduction, Coefficient of fluctuation of speed, Energy stored in flywheel, dimensions of flywheel rim, Flywheel in punching press.

Term Work

The following experiments shall be performed

- 1. Compound Pendulum
- 2. Bifilar Suspension Method and Trifilar Suspension Method
- 3. Hook Coupling Experiment
- 4. Velocity and acceleration analysis using Graphical methods by Polygon method.
- 5. Velocity and acceleration analysis using Graphical methods by Klein's construction
- 6. Velocity analysis using Graphical methods by ICR.
- 7. Velocity and acceleration analysis using Graphical methods i.e., polygons involving Coriolis component.
- 8. To determine Coriolis Component of Acceleration at various speeds of rotation and water flow rates.
- 9. To measure torque transmitting capacity of friction clutch experimentally or To study of different types of friction Clutches.
- 10. To study the various types of Brakes and dynamometers with their practical applications.
- 11. Study of Turning Moment diagrams and to calculate the experimental and theoretical moment of inertia of different type of Flywheel.
- 12. Mini-project based on contents of Syllabus.

Reference Books

- 1. Thomas Bevan, "Theory of Machines", CBS Publishers & Distributors, Delhi.
- 2. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw Hill, Inc.
- 3. Ghosh Amitabh and Malik A.K., "Theory of Machines and Mechanisms", East-west Press.
- 4. Hall A.S., "Kinematics and Linkages Design", Prentice-Hall.
- 5. Erdman, A. G. & Sandor, G.N., "Mechanism design, Analysis and synthesis", Vol 1, Prentice Hall of India.

Text Books

- 1. Rattan S. S., "Theory of Machines", Tata McGraw Hill.
- 2. Ballaney P. L., "Theory of Machines", Khanna Publishers, Delhi.
- 3. R. S. Khurmi, "Theory of Machines', S Chand Publication.

Project Based Learning

Following is the list of topics for project based learning (Not Limited to) based on the syllabus contents:

- 1. To develop demonstration model of Pantograph mechanism
- 2. To develop demonstration model of Ackerman steering gear mechanism.
- 3. To develop demonstration model of Davis steering gear mechanism.
- 4. To develop demonstration models of exact straight line motion mechanism.
- 5. To develop demonstration model to understand Coriolis Effect.
- 6. To prepare chart on comparison among different types of clutches with their application.
- 7. Case study on real life application of clutches used in automobile.
- 8. To develop demonstration model of Prony brake dynamometer
- 9. Case study on real life application of Brakes used in automobile.
- 10. To prepare chart on comparison among different types of dynamometer.
- 11. To develop demonstration model of flywheel energy storage system.

Unit Tests

Unit Test-I	Unit-I, II, III
Unit Test-II	Unit-IV, V, VI

Designation of Course	f Course Python Programming (Course Code: SE1111306)			
Course Code				
Teaching Scheme	Examination Scheme		Credits Allotted	
Practical: - 02 Hours/ Week	Term Work	25 Marks	- 01	
	Practical	25 Marks	01	
	Total	50 Marks	01	

Course	Basics of C and C ⁺⁺ Programming		
Prerequisites: -	Basics of C and C Programming		
	The students should be able to		
Course	1. Readily use the Python programming language		
Objectives: -	2. Apply various data types and control structure.		
	3. Understand and begin to implement code		
	Upon completion of the course, students will be able to		
	1. Understand how to install and run python and create.		
Course	2. Understand flow control.		
Outcomes: -	3. Understand complex datatypes.		
	4. Understand and Apply functions.		
	5. Understand various modules.		
	6. Understand and Apply Num Pymodule.		

Unit-I	Python introduction	(04 Hrs.)
Learn to inst	tall and run Python on your computer, Keywords and Identifiers, Statement, Inden	tation and
Comments,	Variables, Constants and Literals, Data Types, Type Conversion and Type Casti	ng, Input,
Output and	Import.	
Unit-II	Python Flow Control	(04 Hrs.)
Learn to inst	tall and run Python on your computer, Keywords and Identifiers, Statement, Indent	ation and
Comments,	Variables, Constants and Literals, Data Types, Type Conversion and Type Cast	ing, Input,
Output and I	Import.	
Unit-III	Datatypes	(04 Hrs.)
Numbers, T	ype Conversion and Mathematics, List, Tuple, Strings, Sets, Dictionary.	
Unit-IV	Python Functions	(04 Hrs.)
Function Ar	guments, Recursion, Anonymous/Lambda Function, Global, Local and Nonlocal va	riables,
Global Keyv	vord.	
Unit-V	Python Modules	(04 Hrs.)
Modules in I	Python, import modules in Python, import statement, Import with renaming, from in	nport
statement, Ir	nport all names, Python Module Search Path.	
Unit-VI	NumPy Module	(04 Hrs.)
Python Matr	ix, Add Two Matrices, Transpose a Matrix, Multiply two matrices	

Term Work

 Basic Exercise for Beginners Practice and quickly learn Python's necessary skills by solving simple questions and problems. Topics: Variables, Operators, Loops, String, Numbers, List

2. Python Loop Exercise

This Python loop exercise aims to help developers to practice branching and Looping techniques in Python.

Topics: If-else statements, loop, and while loop.

- Python Functions Exercise
 Practice how to create a function, nested functions, and use the function arguments effectively in Python by solving different questions.
 Topics: Function's arguments, built-in functions.
- 4. Python String Exercise Solve Python String exercise to learn and practice String operations and manipulations.
- Python Data Structure Exercise Practice widely used Python types such as List, Set, Dictionary, and Tuple operations in Python
- Python List Exercise
 This Python list exercise aims to help Python developers to learn and practice list operations.
- Python Dictionary Exercise This Python dictionary exercise aims to help Python developers to learn and practice dictionary operations.
- 8. Python Tuple Exercise This exercise aims to help Python developers to learn and practice tuple operations.

Text Books

- 1. Introduction to Computation and Programming using Python, by John Guttag, PHI Publisher,
- 2. Timothy A. Budd, "Exploring Python", Mc-Graw Hill Education (India) Private Ltd., 2015.
- 3. Robert Sedgewick, Kevin Wayne, Robert Dondero, "Introduction to Programming in Python: An Inter-disciplinary Approach, Pearson India Education Services Pvt. Ltd., 2016.

Reference Books

- 1. Python Programming using problem solving Approach by Reema Thareja, Oxford University, Higher Education Oxford University Press; First edition (10 June 2017), ISBN-10: 0199480173.
- 2. Data Structures and Algorithms in Python by Michael T Goodrich and Robertto Thamassia, Michael S Goldwasser, Wiley Publisher (2016)
- 3. Fundamentals of Python first Programmes by Kenneth A Lambert, Copyrighted material Course Technology Inc. 1st edition (6th February2009)

Supplementary Resources:

- 1. <u>http://www.w3schools.com</u>
- 2. <u>http://docs.python.org</u>
- 3. <u>http://www.tutorialspoint.com</u>
- 4. <u>http://www.learnpython.org</u>

Designation of Course	Massive open online courses (MOOC) (Course Code: AE1111307)		
Teaching Scheme:	Exami	Examination Scheme	
	Total		02

The students shall be encouraged to complete two MOOCs during their B. Tech. Mechanical programme. Students shall register to MOOCs which are offered by any one the following agencies:

(i) SWAYAM:	www.swayam.gov.in
(ii) NPTEL:	www.onlinecourse.nptel.ac.in
(iii) Course Era:	www.coursera.org
(iv) edX online learning:	www.edx.org
(v) MIT Open Course ware:	www.ocw.mit.edu
(vi) Udemy:	www.udemy.com
(vii) IIT Bombay Spoken Tutorial:	www.spoken-tutorial.org
(viii) Artificial Intelligence - C DAC Pune:	https://futureskillsprime.in/
(ix) AR- VR - CDAC Pune:	<u>https://futureskillsprime.in/</u> <u>https://tinyurl.com/jx93jwft</u>

Student shall take a prior approval from the department before registering for a given MOOCs. Students shall complete MOOCs during their tenure of a given B. Tech. programme. Students shall submit a passing certificate of MOOCs to obtain two credits per MOOC. The credits obtained for MOOC will be reflected in the mark sheet of Semester VIII.

Designation of Course	Value Aided Course-I: Computer Aided Drafting (Course Code: VA1111308)			
Teaching Scheme:	Examination Scheme		Credits Allotted	
Theory: 2 Hrs./Week	IA	100	02	
	Total	100	02	

G	
Course	1. Computer Aided Drafting and Visualisation
Prerequisites: -	2. Computer Aided Machine Drawing
Course	1. To introduce students to the basicconcepts of CAD modelling.
Objectives: -	2. To develop the skills in Reading and Interpretation of Engineering Drawings.
	3. To familiarize students with SolidWorks Software to Crate 2D and 3D model,
	Assembly, Drafting and Sheet metal modelling.
Course	The students will be able to
Outcomes: -	1. Understand the concepts of CAD modelling and Creating 2D sketches of
	machine components AUTOCAD Software.
	2. Creating 3D drawing machine components using SolidWorks Software.
	3. Creating 3D drawing for Assembly of machine components using SolidWorks
	Software.

sheets, Scal Drawing Co Unit-II	n to Engineering Drawing, Types of lines and Dimensioning, Layout and si les. Introduction to AutoCAD, AutoCAD initial setting and AutoCAD con ommands, Modify Tools, and Dimensioning, Orthographic and Isometric Projections	
Drawing Co Unit-II	ommands, Modify Tools, and Dimensioning,	nmands, Basic
Unit-II		
	Orthographic and Isometric Projections	•
	Orthographic and isometric Projections	
	ic Projections of given Pictorial view by first angle projection method only c Projection. Orthographic Drawing by using AutoCAD.	y, Sectional
01	f Isometric Projections-Isometric Scale, Isometric Axes, Isometric Projections,	and Isometric
	using AutoCAD.	and isometric
Unit-III	Fundamental of Machine Drawing and Conventional Representation	(04 Hrs.)
Introduction	1 to Machine Drawing and its importance, Code of practice for Engineering	Drawing, BIS
specification	ns - Materials, Welding Joint and symbols, riveted joints, pipe joints, keys	, and screwed
	Conventional Representation of dimensioning and sectioning, breaks in pipe	
Screw Three	ads, springs, gears, foundation bolts, Common features and machine component	ts.
Unit-IV	Introduction to CAD	(04 Hrs.)
Introduction	n to CAD and CAE Features of SolidWorks, Various products available in S	olidWorks for
Product De	sign, Simulation, Communication SolidWorks Graphical User Interface - Fe	ature manager
design tree	, Callouts, Handles, Confirmation corner, mouse buttons, keyboard shortcu	its, Command
Manager. S	ketch Entities, Sketch Tools, Block, Relation and Dimensioning, fully defined,	Over defined,
under define	ed drawing.	
Unit-V	Basic Part Modelling	(04 Hrs.)
Part Model	ling Tools, Creating Extrude features, Creating Revolve features, Creating S	wept features,
	ft features. Creating Reference, creating curves, Fillet features, Inserting Hole t	•
e	hell, rib, pattern and advanced modelling tools. Part Modelling Tools, creating	
	serting Hole types, Creating Chamfer, Shell, rib, pattern and advanced	
modelling to		
Unit-VI	Part Modelling - I	(04 Hrs.)

Introduction to Assembly Modelling & Approaches, Applying Advanced Mates and Mechanical Mates, Manipulating Components, Creating Pattern, Creating Explode Views. Generating Views, Creating Dimensions, Inserting Annotations and Bill of Materials.

Term Work

Term work shall consist of A-2/A4 size printouts of the problems solved in practical's using Solid Works Software.

- 1. Introduction to CAD drawing
- 2. Sketcher drawings
- 3. Part modelling
- 4. Assembly Modelling
- 5. Exploded view of Assembly
- 6. Drafting of Mechanical Systems

Text Books

 Kuang-Hua Chang, "Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2018", SDC Publishers, 2018

Reference Books

- 1. Ibrahim Zeid and R. Siva-Subramaniam "CAD/CAM- Theory and Practice", Tata McGraw Hill, Publishing Co. 2009.
- 2. Rao P. N., "CAD/CAM", Tata McGraw Hill.
- 3. Foley, Van Dam, Feiner and Hughes, "Computer Graphics Principles and Practice", Second edition, Addison–Wesley, 2000.
- 4. Martenson, E. Micheal, "Geometric Modelling", John Wiley & Sons, 1995.
- 5. Ronald E. Barr, DavorJuricic, Thomas J. Krueger, "Engineering & Computer Graphics Workbook Using SolidWorks 2014", SDC Publication, 2014.
- 6. John Willis, Sandeep Dogra, "SOLIDWORKS 2019: A Power Guide for Beginners and Intermediate User", published by CADArtifex, 2019.

B. TECH. MECHANICAL: SEMESTER- IV

Designation of Course	Science of Engineering Materials (Course Code: MJ1111401)			
Teaching Scheme	Examination Sche	Credits Allotted		
Theory: -03 Hours/Week	End Semester Examination			
Term Work :-2 Hours/Week	Internal Assessment	40 Marks	- 03	
	Term Work	25 Marks		
	ORAL	25 Marks	01	
	Total	150 Marks	04	

Course	The student should have		
Course			
Prerequisites:-	1. Basic knowledge of physics and chemistry		
	2. Basic information of engineering materials		
	3. Basic knowledge of manufacturing processes		
Course	The student should acquire the knowledge of		
Objectives:-	1. The scope, objective and application of materials, engineering properties.		
	2. Material testing to determine the mechanical properties and its applications in		
	mechanical systems.		
	3. Different methods to change the mechanical properties.		
Course	The students should be able to		
Outcomes:-	1. Understand basics of plastic deformation, annealing, re- crystallization and apply		
	in mechanical engineering applications.		
	2. Understand and evaluate different types of mechanical properties.		
	3. Understand and apply fundamental concept of equilibrium diagrams in		
	selections of alloys for different applications.		
	4. Understand and apply the different types of heat treatment processes on steels.		
	5. Understand the different types of alloy steels, tool steels and stainless steels and		
	its applications in mechanical engineering.		
	6. Understand the concept of powder metallurgy and apply in manufacturing of		
	components.		

Unit-I	Plastic Deformation, Recrystallization and Strengthening Mechanism	(06 Hrs.)	
Mechanism of plastic deformation, Critical resolve shear stress, Deformation of single crystal and			
polycrystalline metals, Mechanism of plastic deformation at high temperature, effect of grain size, Work			
Hardening, C	old and hot working, Annealing and re- crystallization,		
Unit-II	Mechanical Testing of Metals	(06 Hrs.)	
Study of destructive testing Engineering stress and true stress strain, evolution of properties, Numerical			
based Tensile test, Hardness testing such as Brinell, Rockwell, Vickers and Micro hardness test, Impact test,			
Fatigue test, Creep test,			
Non-Destructive testing such as Liquid dye penetrate test, Magnaflux test, Eddy current test, Ultrasonic			
testing and Radiography testing.			
Unit-III	Equilibrium Diagrams	(06Hrs.)	
Related terms and their definitions, Hume Ruther's rule of solid solubility, solidification, Dendritic growth,			
cooling curves, Plotting of Equilibrium diagrams, Lever rule, Coring, Isomorph's system, Eutectic system,			
Partial eutectic and eutectoid system, non-Equilibrium cooling and its effects, study of Fe-Fe3 C equilibrium			
diagram. steel classifications			

|--|

Transformation products of austenite, Martensite transformation & characteristics of martensite, Time – Temperature Transformation curve, Critical Cooling rate, Heat treatment of steels - Annealing, Normalizing,

Hardening, Martempering, Austempering, Retained austenite, tempering, Surface hardening heat treatment.		
Unit-V	Cast Irons, Alloy Steels & Tool Steels	(06 Hrs.)
Classification of alloying elements, Types of cast irons, Properties of different cast irons, Effect of alloying		
elements on properties, Specifications of steels, Various alloy steels, Stainless steels - Classification,		
Applications & properties, Tool Steels – Classification, Applications & properties		
Unit-VI	Powder Metallurgy	(06 Hrs.)
Introduction,	Advantages and limitations of powder metallurgy, Production of	metals powder,
	Advantages and limitations of powder metallurgy, Production of the second secon	
Characteristic		ethods, Sintering

List of Practical's:

- 1. Tensile test to determine strength and other mechanical properties
- 2. Hardness test Brinell and Vickers or Rocwell hardness test
- 3. Imact test to determine the Impact strength of Materials
- 4. Study of Fatigue strength
- 5. Study of Erichsen Cupping test for determine the cupping depth of sheet metal
- 6. Study of Magnetic Particle test
- 7. Study of Liquid penetrate test
- 8. Study of Ultrasonic Test
- 9. Heat Treatment of Steels
- 10. Study of microstructure of Plain carbon steels

Text Books

- 1. Material Science and Physical Metallurgy", Dr.V.D. Kodgere, Everest Publication, Pune.
- 2. "Material science and Metallurgy", O P Khanna, Khanna Publication, Delhi
- 3. "Material Science and Engineering", R K Rajput, S K Kataria and Sons Publication, Delhi

Reference Books

- 1. "Physical Metallurgy", S H Avner, Tata Micro hill Publication, Delhi
- 2. "Physical Metallurgy" Raghwan V, PHI Learning Pvt. Ltd, Delhi
- 3. Polymer Science, V. R. Gowarikar, N. V. Viswanathan, jayadevSreedhar, Wiley Eastern Limited
- 4. Polymer Science and technology (2nd Edition), P. Ghosh, Tata McGRAW Hill, 2008
- 5. Polymers: Chemistry & Physics of Modern Materials (2nd edition) J.M.G. Cowie, Blackie Academic & Professional, 1994.
- 6. Engineering Chemistry by Dr. A. K. Pahari and Dr. B. S. Chauhan, Laxmi Publications (P) Ltd, New Delhi.
- 7. Engineering Chemistry (16th Edition) Jain, Jain, DhanpatRai Publishing Company, 2013.

Project Based Learning

Following is the list of Topics for Project Based Learning (Not Limited to) based on the syllabus contents:

- 1. To develop demonstration model of crystal structure.
- 2. To prepare a chart on different material and its recrystallization temperatures.
- 3. To develop a tensile test specimen as per the standards and find its U T S and Y S
- 4. To find the hardness of any one component by Brinel or Rockwell hardness testing machine
- 5. To identify flaws and defects in different materials by any NDT methods
- 6. Case study on case hardening of any mechanical component
- 7. To perform annealing on any mechanical component
- 8. To perform hardening operation by either oil quenching or water quenching on any mechanical component.
- 9. To prepare a chart on properties of different cast irons by using microscope, hardness testing or spark testing.
- 10. To prepare a flowchart on processing of tool steels
- 11. To develop demonstrations model of manufacturing of metal powder by atomization technique
- 12. To develop demonstrations model of different type of powder compacting methods
- 13. To prepare a flow chart of production process of carbide tools, ferrites, clutch plates and elastic contact materials.
- 14. To prepare a flow chart of any mechanical component manufactured by powder metallurgy technique

Unit Test

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course		eory of Machines e Code: MJ1111402)	
Teaching Scheme	Examination S	Scheme	Credits Allotted
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03
Tutorial: - 01 Hour/Week	Internal Assessment	40 Marks	03
	Tutorial	Internal Evaluation	01
	Total	100 Marks	04

Course	1. Engineering Physics and Mathematics
Prerequisites:-	2. Engineering Mechanics
	3. Mechanisms of Machines
Course	1. To develop competency in understanding of theory of spur and helical gear.
Objectives:-	2. To develop competency in different types of gear train.
	3. To develop understanding of static and dynamic balancing, cam and follower,
	gyroscopic forces; and moments.
Course	1. Understand the gear theory which will be the Apply for the gear design.
Outcomes:-	2. Understand torque transmitting capacity in gear trains which will be Apply the
	for gear box design.
	3. Apply the principles of balancing of masses to various links, mechanisms and engines
	4. Understand and Apply the concept of different types of governor and its applications.
	5. Analyse various types of cam and followers with different kinds of follower motion.
	6. Apply the principles of gyroscopic effects and stabilization on various transport vehicles.

Unit-I	Spur Gears	(06 Hrs)	
Classificati	Classification, Spur gear: definition, terminology, fundamental law of toothed gearing, involute and		
cycloidal profile, path of contact, arc of contact, conjugate action, contact ratio, minimum number of			
teeth, inter	teeth, interference and under cutting, Friction in gears.		
Helical gea	ars: nomenclature, Center Distance		
Unit-II	Gear Trains	(06 Hrs)	
Types of Gear Trains, analysis of epicyclic gear trains, Holding torque - Simple, compound and			
epicyclic gear trains, torque on sun and planetary gear train, compound epicyclic gear train, Bevel			
epicyclic Gear train.			
Unit-III	Balancing	(06 Hrs)	
Static and dynamic balancing, balancing of rotating masses in single and several planes, primary and			
secondary balancing of reciprocating masses, balancing in single cylinder engines, direct and reverse			
cranks method, radial / V-engines.			
Unit-IV	Governors	(06 Hrs)	
Introduction, Classification, Centrifugal Governor, Terminology, Watt Governor, Porter Governor,			
Proell Governor, Hartnell Governor, Wilson-Hartnell Governor. Sensitiveness, Stability, Isochronous,			
Hunting. Effort and Power of Governor, Controlling Forces			
Unit-V	Cam and Follower	(06 Hrs)	

Types of cams and followers, analysis of standard motions to the follower, Determination of cam profiles for different follower motions, Jump phenomenon of Eccentric cam, Introduction to advanced cam curves (3-4-5 Polynomial cam only)

Unit-VI Gyroscope and Step–Less-Regulation

Gyroscopes- Gyroscopic forces and Couples, Gyroscopic stabilisation for ship and Aeroplane, Stability of four-wheel drive vehicle moving on curved path, Stability of a two-wheel vehicle.

Continuous Variable Transmissions - Geometry, Velocity and torque analysis of Faceplate variators, Conical variators, Spheroidal and cone variators, Variators with axially displaceable cones, PIV drives. (Theoretical Treatment Only)

Tutorial

Numerical and/or theory questions on following topics from previous year question papers of GATE/ESE Mechanical Engg. examinations.

- 1. Spur Gears
- 2. Gear Trains
- 3. Balancing
- 4. Gyroscope
- 5. Cam and Follower
- 6. Governors

Text Books

- 1. Rattan S. S., "Theory of Machines", Tata McGraw Hill.
- 2. Ballaney P. L., "Theory of Machines", Khanna Publishers, Delhi.
- 3. R. S. khurmi, "Theory of Machines', S Chand Publication.

Reference Books

- 1. Thomas Bevan, "Theory of Machines", CBS Publishers & Distributors, Delhi.
- 2. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw Hill, Inc.
- 3. Ghosh Amitabh and Malik A.K., "Theory of Machines and Mechanisms", East-west Press.
- 4. Hall A.S., "Kinematics and Linkages Design", Prentice-Hall.
- 5. Hartenberg and Denavit, "Kinematic Analysis and Synthesis of Mechanisms".
- 6. Erdman, A. G. & Sandor, G.N., "Mechanism design, Analysis and synthesis", Vol 1, Prentice Hall of India.

Project Based Learning

Following is the list of topics for project-based learning (Not Limited to) based on the syllabus contents:

- 1. To prepare a chart on comparison among different types of gears
- 2. To prepare a chart to understand various terminology of spur gear.
- 3. To prepare a chart to understand different methods to avoid interference in spur gear.
- 4. To develop a mechanical system using simple gear train.
- 5. To develop a mechanical system using compound gear train.
- 6. To develop a mechanical system using reverted gear train.
- 7. To develop a mechanical system using epicyclic gear train.
- 8. To prepare a chart comparison among different types of gear trains.
- 9. To develop demonstration model of static and dynamic balancing systems.
- 10. To develop demonstration model of balancing of rotating masses.
- 11. To develop demonstration model of balancing of reciprocating masses.
- 12. Case study on real life applications of various types of governors.
- 13. To develop demonstration model of a Watt Governor/Portal Governor/Proell Governor.
- 14. To prepare a charton compression among different types of governors.

- 15. To prepare a chart to understand various terminology of Cam profile.
- 16. To prepare a chart on comparison among different types of followers.
- 17. To prepare a chart on comparison among different types of follower motions.

18. To develop demonstration model on real life applications of gyroscopic effect such as Ship, aeroplane,automobile, etc.

Unit Tests

Unit Test-I	Unit-I, II, III
Unit Test-II	Unit-IV, V, VI

Designation of Course	Thermodynamics Applications (Course Code: MJ1111403)			
Teaching Scheme	Examination Scheme		Credits Allotted	
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	- 03	
Practical:- 02 Hours/ Week	Internal Assessment	40 Marks	05	
	Term Work	25 Marks	- 01	
	Oral	25 Marks	01	
	Total	150 Marks	04	

Course	1. Mechanical Engineering System.
Prerequisites:	2. Thermodynamic principals
	To provide knowledge about
Course	1. Steam generator and their performance analysis.
Objectives:	2. Reciprocating air compressors, Gas turbines & jet propulsion.
Objectives.	3. Various systems and phenomenon of combustion in I.C. Engine; and Performance analysis of I.C. Engine.
	On completion of the course, students will be able to-
	1. Understand construction working of steam generators and analysis their performance.
	2. Understand construction working of Reciprocating air compressors and analysis their
Course	performance.
Outcomes:	3. Understand fundamentals of gas turbine, analysis their performance and application of gas turbines & jet propulsion.
	4. Understand I.C. Engine systems viz. ignition, cooling and lubrication.
	5. Understand phenomenon of combustion in S.I and C.I. Engine.
	6. Understand terms related to I.C. Engine testing and analysis their performance.

Unit 1	High pressure Boilers and Performance of Boilers	(6 Hrs.)
Classifica	ation of boilers Features of high pressure boiler, construction and working of	of high pressure
boilers, F	luidize bed combustion, boiler mountings and Accessories.	

Boiler performance calculations-Equivalent evaporation, Boiler efficiency, Energy balance, boiler controls, Boiler draught.

Unit 2 Reciprocating Air Compressors

(6 Hrs.)

Uses of compressed air, classification, constructional details of single stage reciprocating compressor, work done, effect of clearance, volumetric efficiency, theoretical and actual indicator diagrams, method of improving volumetric efficiency. Need of multi staging, multistage compressor, work done, volumetric efficiency, condition for maximum efficiency, intercooling, actual indicator diagram.

Unit 3	Gas Turbines & Jet Propulsion	(6 Hrs.)

Theory and fundamentals of gas turbine, Principals, Classification, Assumption for simple gas turbine cycle analysis, Work ratio, Concepts of maximum and optimum pressure ratio, Actual cycle, Effect of operating variable on thermal efficiency, Regeneration, Intercooling. Reheating and their effect on performance, Application of gas turbines.

Jet Propulsion: Introduction, Theory of jet propulsion, Types of jet engines, Energy flow through jet engine, Turbojet, Turboprop, Turbofan and Ducted fan engines, Pulse jet and Ram jet engines, Application of jet engines, Methods of thrust augmentation, Introduction to rocket engines.

(6 Hrs.)

(6 Hrs.)

Unit 4 I. C. Engine Systems

Fuel supply system for S.I and C.I. Engines, M.P.F.I. system for modern automobile engines, CRDI. **Ignition and injection System:** Battery & coil ignition system, Magneto ignition system, Electronic ignition system, Advantage over mechanical contact breaker point system. Spark-Advance Mechanisms. **Engine Cooling System**: Necessity of cooling system, effect of overcooling, Air cooling, Water cooling, Thermostatic radiators. **Lubrication System**: Mist lubrication system, Dry sump lubrication, Wet sump lubrications, Comparison between Wet sump and Dry sump systems, Oil pump. **Supercharging:** Objects of supercharging, Effects on performance, Limitations, Methods of supercharging & turbocharging, Limitation of turbocharging,

Unit 5 Combustion in I. C. engines

Combustion in S. I. Engines: Valve timing Diagram for S.I. engine, Ignition Limit, Stages of combustion, Effect of engine variables on ignition lag & flame propagation, Abnormal combustion: Theories, Effects & Controlling measures, Combustion chambers for S. I. engines.

Combustion in C. I. Engines: Valve timing Diagram for C.I. engine, Air-fuel ratio for C.I. engines, Stages of combustion, Ignition delay & factors influencing delay period, Diesel knock & its control, Combustion chambers for C. I. engines.

Unit 6	Perfor	mance	Character	istics	& Testi	ing (of I. C	C. Engines		(6 Hrs.)
Introduct	ion to	Indian	standards	for	testing	of	I.C.	Engines,	Performance	characteristics,
Determin	ation of	brake j	power, indi	cated	power,	Fric	tion p	ower, Me	thods to determ	mine power and
efficiency	y, Deteri	minatior	n of break tl	nerm	al efficie	ency,	, Mec	hanical eff	iciency, volun	netric efficiency,
Variables	s affectir	ng perfo	rmance of e	ngin	e, Mean	Effe	ctive	Pressure, S	SFC, Air consu	imption, Energy
balance, I	Engine B	Emissior	n and their c	ontro	ols.					

Term Work:

- 1. Study and demonstration of boiler mountings.
- 2. Study and demonstration of boiler Accessories.
- 3. Trial on steam power plant.
- 4. Test on reciprocating air compressor.
- 5. Performance test on rotary air compressor.
- 6. Trial on multi cylinder petrol engine Morse Test.
- 7. Trial on multi-cylinder diesel engine.
- 8. Study of superchargers & turbochargers
- 9. Study of governing systems used in I.C. Engines.
- 10. Study of I. C. Engine emission norms.
- 11. Visit to Boiler House

12. Visit to Automobile service station.

Assignment:

Numerical and/or theory questions on following topics from previous year question papers of GATE/ESE Mechanical Engg. Examinations.

- 1. Boiler performance.
- 2. Single and multistage reciprocating air compressors
- 3. Gas turbine performance
- 4. I C engine systems
- 5. I C engine combustions
- 6. Performance of I C engines.

Text Books

- 1. V. P. Vasandani and D. S. Kumar, Heat Engineering Metropolitan Book Company, New Delhi.
- 2. R S Khurmi and J K Gupta, Textbook of Thermal Engineering, S Chand publications.

Reference Books:

- 1. R. K. Rajput, Thermal Engineering, Laxmi Publications
- 2. Y. Cengel & Boles, "Thermodynamics -An engineering approach", Tata McGraw Hill Publications
- 3. S. Domkundwar, "Thermodynamics & Heat Engines" Dhanpat Rai and Sons
- 4. P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill Publications
- 5. P. L. Ballany, "Thermal Engineering", Khanna Publications
- 6. Ganesan V, "Internal Combustion Engines", Tata McGraw Hill Publishing House
- 7. R. K. Rajput, "Internal Combustion Engines", Laxmi Publications.
- 8. M. L. Mathur & R. P. Sharma, "A Course in I. C. Engines", Dhanpat Rai & Sons
- 9. V. M. Domkundwar, "A Course in I. C. Engines", Dhanpat Rai & Co.
- 10. Shrinivasan, "Automobile Engines", Tata McGraw Hill Publishing House CBS Publication

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus contents:

- 1. To prepare a chart on performance testing of boilers.
- 2. To prepare a chart on comparison among various types of boilers.
- 3. To prepare a chart on comparison between open and closed cycle gas turbines.
- 4. To prepare a chart on comparison among different types of jet engines.
- 5. To prepare a chart on Battery & coil ignition system, Magneto ignition system, Electronic ignition system.
- 6. To prepare demonstration model of high pressure boiler.
- 7. To prepare demonstration model of boiler mounting or boiler accessory.
- 8. To prepare demonstration model of reciprocating compressor.
- 9. To prepare demonstration model of ignition system.
- 10. To prepare demonstration model of Gas Turbines & Jet Propulsion.
- 11. To prepare demonstration model of engine cooling system.
- 12. To prepare demonstration model of lubrication system.

- 13. To prepare demonstration model of governing system.
- 14. To prepare a chart on different processes of combustion in IC engines.
- 15. Case study on different IC Engine systems used in cars available in market.
- 16. To prepare a chart on various performance characteristics of IC engines.

Unit Test -

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

HYBRID AND ELECTRIC VEHICLES

(Course Code: 2	MJ1111404)
-----------------	-------------

Designation of Course	Hybrid and Electric Vehicles				
Teaching Scheme:	Examination Scheme:	Examination Scheme:			
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	- 03		
Tutorial:Hours/ Week	Internal Assessment	40 Marks	- 03		
Practical:Hours/ Week	Term Work	Marks			
	Oral/Practical	Marks			
	Total	100 Marks	03		

Course	The students should have knowledge of
Prerequisites: -	1. Basic of Internal combustion engines,
	2. Electrical and electronics engineering
Course Objectives:-	To study the basic concepts of
	1. Hybrid electric vehicles, vehicle performance and their drive trains.
	2. Electric vehicle architecture design and different energy storage systems.
Course Outcomes: -	Students should be able to
	1. Understand basics of hybrid and electric vehicle and analysis their
	performance.
	2. Understand concept of hybrid electric drive trains
	3. Understand electric vehicle architecture design
	4. Understand different types of storage systems
	5. Understand construction and working of electric drives and analyze their
	performance.
	6. Understand Energy Management Strategies and Indian /global Scenario

Course Contents

Unit I	Introduction of Internal Combustion Engines	(06 Hrs.)			
Introduction	Introduction, Classification of I.C. Engines, Engine Components, Terminology of I.C. engine, Four				
stroke S.I. l	Engines, Valve timing diagram for four stroke S. I. Engine, Four stroke C.	I. Engines,			
Valve timin	g diagram for four stroke C. I. Engine, Comparison of four stroke S.I and C.	I.			
Engines.					
Unit II	Introduction to Hybrid, Electric Vehicles	(06 Hrs.)			
History, Co	mponents of Electric Vehicle, Comparison with Internal combustion Engin	e: Benefits			
and Challen	ges, EV classification and their electrification levels, EV Terminology. Con	figurations			
of Electric V	of Electric Vehicles Performance of Electric Vehicles.				
Unit III	Unit IIIDrive Trains(06 Hrs.)				
Concept of	Hybrid Electric Drive Trains, Architectures of Hybrid Electric Drive Tra	ains, Series			
Hybrid Ele	ctric Drive Trains, Parallel Hybrid Electric Drive Trains, Torque-Coupli	ng Parallel			
Hybrid Elec	ctric Drive Trains, Speed-Coupling Parallel Hybrid Electric Drive Trains.				
Unit IV	Unit IVElectric Vehicle Architecture Design(06 Hrs.)				
Types of Electric Vehicle and components, Electrical protection and system requirement, Battery					
Electric vehicle (BEV), Hybrid electric vehicle (HEV), Plug-in hybrid vehicle (PHEV, Fuel cell					
electric vehicle (FCEV), Comparison of fuel vs Electric and solar power, Solar Power operated					
Electric veh	Electric vehicles.				

Unit V	Types of Storage Systems							
Introduction	to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery ba	ased energy						
storage and	its analysis, Fuel Cell based energy storage and its analysis, Super Capa	citor based						
energy stora	age and its analysis, Flywheel based energy storage and its analysis, Hybri	dization of						
different end	ergy storage devices.							
Unit VI	IElectric Drive Trains and Global Scenario(06 Hrs.)							
Basic conce	pt of electric traction, introduction to various electric drive- train topologies,	power flow						
control in	electric drive-train topologies. Configuration and control of DC M	otor drives,						
Configuration	Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet							
Motor drive	s, Configuration and control of Switch Reluctance Motor drives.							
Technology	Scenario, Market Scenario, Policies and Regulations, Pay	back and						
commercial	model, Polices in India.							

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus contents:

- 1. To prepare a chart on Components of Electric Vehicle.
- 2. To prepare demonstration model of electric Vehicle terminology.
- 3. To prepare demonstration model of Series Hybrid Electric Drive Trains.
- 4. To prepare demonstration model of Parallel Hybrid Electric Drive Trains.
- 5. To prepare demonstration model of Photovoltaic solar based electric Vehicle design / Battery Electric vehicle (BEV)
- 6. To prepare a chart on Types of Storage Systems
- 7. To prepare demonstration model of Storage Systems
- 8. To prepare demonstration model of Configuration and control of DC Motor drives/Induction Motor drives/ Permanent Magnet Motor drives.
- 9. To prepare a chart on energy management strategies used in hybrid and electric vehicles.
- 10. To prepare a chart on comparison of different energy management strategies

Textbooks:

- 1. R. K. Rajput, Thermal Engineering, Laxmi Publications
- 2. Ganesan V, "Internal Combustion Engines", Tata McGraw Hill Publishing House.
- 3. R. K. Rajput, "Internal Combustion Engines", Laxmi Publications.
- 4. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 5. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003

Reference Books:

- James Larminie, J. Lowry, "Electric Vehicle Technology Explaned", John Wiley & Sons Ltd. 2003.
- 2. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 3. Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles Fundamentals, Theory and Design"
- 4. Chris MI, M. Abul and David Wenzhong Gao "Hybrid Electrical Vehicle Principles and

Application with Practical Perspectives" **Unit Tests**

Unit Test-I	Unit- I,II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course	Machine Design and Analysis-I (Course Code : MJ1111405)		
Teaching Scheme	Examination Scheme Credits Allotted		
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	02
Practical: -02 Hours/Week	Internal Assessment	40 Marks	03
	Term Work and Oral	50 Marks	01
	Total	150 Marks	04

Course	1. Computer Aided Drafting and Visualization		
Prerequisites: -	2. Computer Aided Machine Drawing		
	Strength of Machine Components		
Course	To study basic concepts of machine design.		
Objectives: -	2. To design and analysis different types of machine elements		
	3. To design of machine component for finite and infinite life and subjected to		
	fluctuating load.		
Course	1. Understand the basic concept of machine design and evaluate dimensions of		
Outcomes: -	simple components.		
	2. Understand the fundamental concepts for design of shaft, keys and coupling		
	and evaluate forces and dimensions.		
	3. Understand the concept of designing of Power Screws and analyze it for		
	various applications.		
	4. Understand the basic concept of fluctuating loads and Analyze design of		
	components under fluctuating loads.		
	5. Understand the concept of fasteners and threaded joints; and analyze when it		
	is subjected to different loading conditions.		
	6. Understand the Design concept of welded and analyze when it is subjected to		
	different loading conditions.		

Unit-I Introduction to Design and Design against Static Load	(06 Hrs)	
Introduction to Design: Need for component design, generalized design process, design consideration		
for casting, machined parts, welded assembly, Introduction to design for manufacture & assembly,		
Design of simple machine parts - Cotter joint, Knuckle.		
Unit -II Shafts, Keys and Coupling	(06 Hrs)	
Introduction, Transmission Shafts, Shaft Design on Strength Basis, Shaft Design on T	Forsional Rigidity	
Basis, ASME Code for Shaft Design		
Keys-Types of keys -Saddle, Sunk, feather, woodruff, square, flat, Kennedy key, key design.		
Coupling and its classification, Design of rigid flange and bush pin type flexible coup	oling	
Unit-IIIPower Screws(06Hrs)		
Power Screws, Forms of Threads, Multiple Threaded Screws, Terminology of Power Screw, Torque		
Requirement—Lifting Load, Torque Requirement—Lowering Load, Self-locking Screw, Efficiency of		
Square Threaded Screw, Efficiency of Self-locking Screw, Overall Efficiency, Coeff	icient of Friction,	
Design of Screw Jack.		
Unit-IV Design for Fluctuating Loads	(06 Hrs)	

Stress concentration factor and its Reduction, Stress concentration factor for various machine parts, Cyclic stresses, Fatigue and endurance limit, Notch sensitivity, Cumulative Damage in Fatigue, Design for finite, Soderberg, Goodman,

Unit-V	Threaded Joints	(06 Hrs)		
Basic Type	Basic Types of Screw Fastening, Cap Screws & Setscrews, Bolt of Uniform Strength, Locking Devices,			
Terminology of Screw Threads, ISO Metric Screw Threads, Bolt under tension, Eccentrically Loaded				
Bolted Joints in Shear, Eccentric Load Perpendicular to Axis of Bolt, Torque Requirement for Bolt				
Tightening.				
Unit-VIWelded Joints(06 Hrs)				
Welded Joints- Welding Processes, Strength of Butt and Fillet Joints, Strength of Parallel Fillet Welds,				

Strength of Transverse Fillet Welds, Axially Loaded Unsymmetrical Welded Joints, Eccentric Load in the Plane of Welds, Welding Symbols.

Term work

Term work shall consist of following experiments. Hand calculations must be confirmed through a computer programme using any programming language.

- 1. Symbolic representation of common machine components using Auto-CAD.
- 2. Design of machine components such as knuckle joint, cotter joint and lever (anyone) using CAD software.
- 3. Design of coupling system using CAD software.
- Couplings- types of couplings, Design of rigid and flexible couplings.
- 4. Design of screw jack using CAD software.
- 5. Design of Mechanical Spring.

Types of Springs, Terminology of Helical Springs, Styles of End, Stress and Deflection Equations, Series and Parallel Connections, Design of Helical Springs, Multi-Leaf Spring,

 Riveted Joints Types of Rivet Heads and riveted Joints, Rivet Materials, Types of Failure, Strength Equations, Efficiency of Joint, Caulking and Fullering,

Note: Design data book should be used extensively.

Project Based Learning

Following is the list of topics for project-based learning (Not Limited to) based on the syllabus contents:

- 1. To develop Industrial/Real life application demonstration model of different types of Joints. (Cotter joint and knuckle joint)
- 2. To observe the system where transmission of power takes place through shaft, Keys, coupling, like Transmission of power from motor to pump/generator/lathe machine/drilling machine. By selecting suitable materials, design the shaft, key, and coupling. To prepare design report and assembly drawing indicating overall dimensions, tolerances, and surface finish. Also, to prepare bill of materials.
- 1. To develop a demonstration model of different types of couplings.
- 2. To develop a demonstration model of different types of keys.
- 3. To observe the system where transmission of power takes place through power Screws. (e.g., Lead screw of lathe, feed screws of machine tools, Clamping screws, Toggle Jack screw, etc.)

Get the required information regarding effort, clamping force, etc., and selecting suitable materials design screw, nut, and different simple components in assembly. To prepare design report and assembly drawing indicating overall dimensions, tolerances, and surface finish. Also, to prepare bill of materials.

- 4. To develop demonstration models of different types of springs.
- 5. To develop demonstration models of different types of threaded joints.
- 6. To develop demonstration models of different types of fasteners.
- 7. To develop demonstration models of different types of welded joints.
- 8. To develop demonstration models of different types of riveted joints.

Textbooks

- 1. V. B. Bhandari, "Design of Machine Elements", Tata McGraw Hill Publication Co. Ltd.
- 2. R. S. Khurmi and J.K. Gupta "Machine Design", S Chand Publication.
- 3. Shigley J. E. and Mischke C. R., "Mechanical Engineering Design", McGraw Hill Publication Co. Ltd.
- 4. Spotts M. F. and Shoup T.E., "Design of Machine Elements", Prentice Hall International.

Reference Books

- 1. Black P.H. and O. Eugene Adams, "Machine Design", McGraw Hill Book Co. Inc.
- 2. Willium C. Orthwein, "Machine Components Design", West Publishing Co. and Jaico Publications House.
- 3. Hall A. S., Holowenko A. R. and Laughlin H. G, "Theory and Problems of Machine Design", Schaum's Outline Series.
- 4. Sharma C. S. and PurohitKamlesh, "Design of Machine Elements", PHI LearingPvt. Ltd.
- 5. D. K. Aggarwal & Sharma P. C., "Machine Design", S.K Kataria and Sons
- 6. Gope P. C., "Machine Design: Fundamentals and Applications", PHI LearingPvt. Ltd.
- 7. "Design Data- P. S. G." College of Technology, Coimbatore.
- 8. V. B. Bhandari, "Design Data Book", Tata McGraw Hill Publication Co. Ltd.

Unit Tests

Unit Test-I	Unit-I, II, III
Unit Test-II	Unit-IV, V, VI

Designation of Course	Solid Modelling (Course Code : MJ1111406)		
Teaching Scheme:	Cours Examination Sch	Credits Allotted	
Practical:- 02 Hours/Week	Term Work and Practical	25 Marks	01
	Total	25 Marks	01

Course	1. Computer Aided Drafting and Visualisation		
Prerequisites: -	2. Computer Aided Machine Drawing		
Course	1. To introduce students to the basic concepts of CAD modelling.		
Objectives: -	2. To develop the skills in Reading and Interpretation of Engineering Drawings.		
	3. To familiarize students with SolidWorks Software to Crate 2D and 3D model,		
	Assembly, Drafting and Sheet metal modelling.		
Course	The students will be able to		
Outcomes: -	1. Understand the concepts of CAD modelling.		
	2. Creating2D sketches of machine components using SolidWorks Software.		
	3. Creating 3D drawing machine components using SolidWorks Software.		
	4. Creating 3D drawing for Assembly of machine components using		
	SolidWorks Software.		
	5. Creating Assembly of machine components using SolidWorks Software.		
	6. Creating detail drawing and generating Bill of Material using		
	SolidWorks Software.		

Unit-I	Introduction to CAD	(02Hrs.)			
Introduction to CAD and CAE Features of SolidWorks, Various products available in SolidWorks for					
Product De	Product Design, Simulation, Communication SolidWorks Graphical User Interface - Feature manager				
design tree	e, Callouts, Handles, Confirmation corner, mouse buttons, keyboard shortcur	ts, Command			
Manager.					
Unit-II	Basic Part Modelling	(02 Hrs.)			
Sketch Ent	ities, Sketch Tools, Block, Relation and Dimensioning, fully defined, Over d	efined, under			
defined dra	wing.				
Unit-III	Part Modelling - I	(02 Hrs.)			
Part Modelling Tools, Creating Extrude features, Creating Revolve features, Creating Swept features,					
Creating Loft features. Creating Reference, creating curves, Fillet features, Inserting Hole types,					
Creating C	hamfer, Shell, rib, pattern and advanced modelling tools.				
Unit-IVPart Modelling - II(02 Hrs.)					
Part Model	ling Tools, creating curves, Fillet features, Inserting Hole types, Creating Cham	fer, Shell, rib,			
pattern and	advanced modelling tools.				
Unit-V	Assembly Modelling	(02 Hrs.)			
Introduction to Assembly Modelling & Approaches, Applying Advanced Mates and Mechanical Mates,					
Manipulating Components, Creating Pattern, Creating Explode Views.					
Unit-VI	Drafting of Mechanical Systems	(02 Hrs.)			
Generating Views, Creating Dimensions, Inserting Annotations and Bill of Materials.					

Term Work

Term work shall consist of A-2/A4 size printouts of the problems solved in practical's using Solid Works Software.

- 1. Introduction to CAD drawing
- 2. Sketcher drawings
- 3. Part modelling
- 4. Assembly Modelling
- 5. Exploded view of Assembly
- 6. Drafting of Mechanical Systems

Text Books

1. Kuang-Hua Chang, "Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2018", SDC Publishers, 2018

Reference Books

- 1. Ibrahim Zeid and R. Siva-Subramaniam "CAD/CAM- Theory and Practice", Tata McGraw Hill, Publishing Co. 2009.
- 2. Rao P. N., "CAD/CAM", Tata McGraw Hill.
- 3. Foley, Van Dam, Feiner and Hughes, "Computer Graphics Principles and Practice", Second edition, Addison–Wesley, 2000.
- 4. Martenson, E. Micheal, "Geometric Modelling", John Wiley & Sons, 1995.
- 5. Ronald E. Barr, DavorJuricic, Thomas J. Krueger, "Engineering & Computer Graphics Workbook Using SolidWorks 2014", SDC Publication, 2014.
- 6. John Willis, Sandeep Dogra, "SOLIDWORKS 2019: A Power Guide for Beginners and Intermediate User", published by CADArtifex, 2019.

End Semester Practical/Oral examination:

- 1. Practical examination duration is Two hours, based on the Term work.
- 2. Questions provided for practical examination should contain minimum five and not more than ten parts.
- 3. Evaluation of practical examination to be done based on the performance of students work in laboratory.

*Oral examination should also be conducted to check the knowledge of conventional and SolidWorks drawing.

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

			B. Tech. Sem. IV:		
		SU	BJECT: - Indian Knowledg	ge System	
		(Course Code: AC1113407)		
TEACHING EXAMINATION SCHEME: CREDITS ALLOTTED:					
	<u>EME:</u>	E	- 1 C	Curditor 02	
	ory: 02 tical: 00		nd Semester Examination: ternal Assessment: 50 Marks	Credits: 02	
	rial: 00	111	ternai Assessment. 50 Marks	,	
1 410				Total Credit: 02	
Сош	rse Objec	rtives		Total Clouit. 02	
1.		To sensitize	the students about Indian cu	lture and civilization includ	ling its
			System and Tradition.		C
2.			lent to understand the knowle n ancient Indian system	edge, art and creative pract	ices, skills,
3.		To help to s	tudy the enriched scientific I	ndian heritage.	
4.		To introduc science & T	e the contribution from Ancie	ent Indian system & traditio	on to modern
Cou	rse Outco	omes: After	learning this course stude	nts will be able to understa	and
1	Concept	ts of Indian Kı	nowledge System		
2	India's o	contribution ir	Philosophy and Literature		
3	India's i	involvement in	n Mathematics and Astronom	Ŋ	
4	India's 1	role in Medici	ne and Yoga		
5	India's i	influence in Sa	ahitya		
6	Concept	ts of Indian Sh	astra		
UNI	T – I	Introductio	on to Indian Knowledge Sys	stem	(04 Hours)
			Concept and Scope of IKS, I Paradigm, IKS in ancient Ind		
UNIT – II Philoso		Philosophy	and Literature		(04 Hours)
UNI					

UNIT - III	Mathematics and Astronomy	(04 Hours)
	Contribution of Aryabhatta, Mahaviracharya, Bodhayan,	
	Bhashkaracharya,	
	Varahamihira and Brahmgupta in Mathematics and Astrononmy	
UNIT - IV	Medicine and Yoga	(04 Hours)
	Major contributions of Charak, Susruta, Maharishi Patanjali and	
	Dhanwantri in Medicine and Yoga	
UNIT -V	Sahitya	(04 Hours)
UNIT -V	Introduction to Vedas, Upvedas, Upavedas (Ayurveda,	(04 Hours)
UNIT -V	Introduction to Vedas, Upvedas, Upavedas (Ayurveda, Dhanurveda, Gandharvaveda)	(04 Hours)
UNIT -V	Introduction to Vedas, Upvedas, Upavedas (Ayurveda,	(04 Hours)
UNIT -V	Introduction to Vedas, Upvedas, Upavedas (Ayurveda, Dhanurveda, Gandharvaveda)	(04 Hours)
UNIT -V	Introduction to Vedas, Upvedas, Upavedas (Ayurveda, Dhanurveda, Gandharvaveda) Puran and Upnishad) and shad darshan (Vedanta,	(04 Hours)
	Introduction to Vedas, Upvedas, Upavedas (Ayurveda, Dhanurveda, Gandharvaveda) Puran and Upnishad) and shad darshan (Vedanta, Nyaya.Vaisheshik, Sankhya, Mimamsa, Yoga, Adhyatma and Meditation)	
UNIT -V UNIT - VI	Introduction to Vedas, Upvedas, Upavedas (Ayurveda, Dhanurveda, Gandharvaveda) Puran and Upnishad) and shad darshan (Vedanta, Nyaya.Vaisheshik, Sankhya, Mimamsa,	(04 Hours) (04 Hours) (04 Hours)

Reference Books

1. Textbook on IKS by Prof. B Mahadevan, IIM Bengaluru

2. Kapur K and Singh A.K (Eds) 2005). Indian Knowledge Systems, Vol. 1. Indian Institute of

Advanced Study, Shimla. Tatvabodh of sankaracharya, Central chinmay mission trust, Bombay, 1995.

3. The Cultural Heritage of India. Vol.I. Kolkata:Ramakrishna Mission Publication, 1972.

4. Nair, Shantha N. Echoes of Ancient Indian Wisdom. New Delhi: Hindology Books, 2008.

5. Dr. R. C. Majumdar, H. C. Raychaudhuri and Kalikinkar Datta: An Advanced History of India (Second Edition) published by Macmillan & Co., Limited, London, 1953.

6. Rao, N. 1970. The Four Values in Indian Philosophy and Culture. Mysore: University of Mysore.

7. Avari, B. 2016. India: The Ancient Past: A History of the Indian Subcontinent from c. 7000 BCE to CE 1200. London: Routledge.

8. Textbook on The Knowledge System of Bhārata by Bhag Chand Chauhan,

9. Histrory of Science in India Volume-1, Part-I, Part-II, Volume VIII, by Sibaji Raha, et al. National Academy of Sciences, India and The Ramkrishan Mission Institute of Culture, Kolkata (2014).

10. Pride of India- A Glimpse of India's Scientific Heritage edited by Pradeep Kohle et al. Samskrit Bharati (2006).

12. Vedic Physics by Keshav Dev Verma, Motilal Banarsidass Publishers (2012).

13. India's Glorious Scientific Tradition by Suresh Soni, Ocean Books Pvt. Ltd. (2010).

14. Kapoor, Kapil, Avadesh Kr. Singh (eds.) Indian Knowledge Systems (Two Vols), IIAS, Shimla, 2005

Designation of Course	Social Activities (Course Code: CC1111408)			
Teaching Scheme	Examination Scheme Credits Allotted			
Theory: Hours/ Week	End Semester Examination	Marks	02	
Practical: Hours/Week	Internal Assessment	Marks	02	
	Term Work and Oral	Marks	-	
	Total	Marks	02	

Students should participate in at least **TWO** activities from the list below

- 1. Volunteer work
- 2. Community clean-up events
- 3. Fundraising for charitable organizations
- 4. Hosting awareness campaigns
- 5. Participating in marches or protests for social justice
- 6. Organizing food or clothing drives for those in need
- 7. Advocacy for environmental conservation
- 8. Peer support groups for mental health or addiction recovery
- 9. Organizing blood drives or bone marrow registry events
- 10. Visiting nursing homes or shelters to spend time with residents or animals
- 11. Participating in cultural exchange programs
- 12. Supporting initiatives for gender equality and women's rights
- 13. Creating art installations or performances that address social issues
- 14. Participating in political activism and lobbying for policy change.
- 15. Participating in NSS Social Activities.

*Social Activities are not limited to those listed above

Course Structure and Syllabus for

Minor Degree Programme: 3D Printing

(CBCS 2023 Course) As per NEP 2020 Guidelines

Sr.	Sr. Course			Teaching Scheme (Hrs./Week)Examination Scheme (Marks)						Credits					
No	Code	Course		Р	Т	ESE	IA	TW	PR	OR	Total	TH	Pr /Or	Tut	Total
1.	MI1111301	Sem III Materials & Manufacturing Processes for 3D Printing	3	2	0	60	40	25	-	25	125	3	1	-	4
2.	MI1111401	Sem IV Modelling for 3D Printing	3	2	0	60	40	25	-	25	125	3	1	-	4
3.	MI1111501	Sem V 3D Printing Technology & Processes	3	2	0	60	40	25	-	25	125	3	1	-	4
4.	MI1111601	Sem VI Design for Additive Manufacturing	3	2	0	60	40	25	-	25	125	3	1	-	4
5.	MI1111701	Sem VII Project	-	4	-	-	-	50	-	50	100	-	4	-	4
		Total	12	12	0	240	160	150	0	150	700	12	8	0	20

Designation of Course	Materials and Manufacturing Processes for 3D Printing (Course Code: MI1111301)							
Teaching Scheme	Examination Sch	Credits Allotted						
Theory: -03 Hours/Week	End Semester Examination	60 Marks	03					
Term Work :-2 Hours/Week	Internal Assessment	40 Marks	05					
	Term Work & Oral	50 Marks	01					
	Total	150 Marks	04					

Course	The student should have basic knowledge of					
Prerequisites:-	1. Knowledge of basic concept of Physics and chemistry					
1	2. Basic knowledge of Engineering materials and its properties					
	3. Basic knowledge of cutting tools					
Course	The student should acquire the knowledge of					
Objectives:-	1. To acquire the knowledge of Material science and power metallurgy.					
	2. To acquire the knowledge of lathe, drilling, milling, and abrasive machining.					
	3. To acquire the knowledge of CNC Technology					
Course	The students should be able to-					
Outcomes:-	1. Understand basics of Engineering material and its characteristics					
	2. Understand the concept of powder metallurgy and apply in manufacturing					
	of components.					
	3. Understand the various casting processes and apply the best casting process for					
	a specific product.					
	4. Understand different operations of Lathe, Drilling and Milling machine and					
	apply them to create the job.					
	5. Understand various grinding machines and plastic moulding machine and apply					
	them for create the shape.					
	6. Understand the various additive manufacturing and apply them for					
	manufacturing of components.					

Unit-I	I Study of Engineering materials and its properties (06 Hrs.)						
Classification	Classification of Engineering materials, Introduction to ferrous and non ferrous materials, Study of						
plastics and p	polymers ,elastomers rubbers. Ceramic materials, study of composite materials. M	echanical					
properties of	different materials.						
Unit-II	Introduction to Powder Metallurgy	(06 Hrs.)					
Introduction	to Powder Metallurgy, Advantages and limitations of powder metallurgy, Production of m	netals					
powder, Char	acteristics of powder, Powder conditioning, Powder Compacting, Hot compacting method	ls,					
Sintering and	sintering furnaces,						
Unit-III	Casting Processes	(06Hrs.)					
Introduction	to casting, Pattern and pattern making, Core and core makingIntroduction, Cor	e making					
Procedure, T	ypes of cores, Core print, Core boxes. Mould and mould making-						
Moulding Methods. Sand Casting, Pressure and gravity die casting, Shell mould casting, Investment							
casting, Continuous casting, centrifugal casting, Applications, Merits and limitations.							
Unit-IV	Machining Processes	(06 Hrs.)					

Lathe Machines: Introduction, function, types, construction, accessories, operations. Drilling Machines: Fundamentals of drilling process Milling Machines: Fundamentals of milling process, cutters-types and geometry, Operations performed on milling machines. Evolution of CNC Technology,

principles, features, advantages, applications, CNC and DNC concept, classification of CNC Machines, CNC controllers. CNC Programming: Coordinate system, structure of a part program, G & M Codes.

Unit-V	Abrasive Machining Processes, Plastics & Plastic Moulding	(06 Hrs.)
--------	---	-----------

Abrasive Machining Processes: Abrasive machining, abrasives -types, size and geometry, Grinding, grinding wheels, Types of grinding machines,

Plastics & Plastic Moulding: Moulding characteristics of plastic, Moulding process- compression, transfer and injection blow moulding. Mould design- Materials and construction, bulk factor, shrinkage, moulding parameters, moulding machines, extruders.

Unit-VI	Additive Manufacturing	(06 Hrs.)	
---------	------------------------	-----------	--

Introduction to Additive manufacturing, Different types of Additive manufacturing processes, 3 D Printing technology, FDM and SLA processes, working principle, Applications, introduction to Stereo lithography Apparatus, Process, working principle, photopolymers, photo polymerization, Layering technology, laser and laser scanning, Overview & Introduction of AM.

Project Base Learning

Student can do following small working models as PBL

- 1. Anyone casting the component from non ferrous alloys and do the different types of machining on it.
- 2. Take raw materials and do the different machining operations to produce finish product.
- 3. Prepare green compact from metallic powder and do sintering on to produce component from powder metallurgy technique
- 4. Prepare plastic mounding component from raw materials
- 5. Prepare the 3 D printing component by use of FDM or SLA processes.

List of Practical's:

- 1. Testing of mechanical properties such as Tensile strength
- 2. Testing od Hardness and impact strength
- 3. Demonstration and Practical on powder compacting processes
- 4. Demonstration and Practical casting processes
- 5. Study on lathe and other machining processes
- 6. Demonstration and Practical on milling and drilling
- 7. Demonstration and Practical on grinding operations
- 8. Demonstration and Practical on plastic molding.
- 9. Demonstration and Practical on 3D printing

Text Books

- 1. "Material Science and Engineering", R K Rajput S K Kataria and Sons Publication, Delhi.
- 2. P. C. Sharma, Production Engineering, S. Chand Publications
- 3. R. K. Jain, Production Technology, Khanna Publishers
- 4. P.Radhakrishnan, V.Raju, CAD/CAM/CIM, New Edge international Publishers.

Reference Books

- 1. P. N. Rao, Manufacturing Technology- Vol 1, McGraw Hill Education (India) Private Limited
- 2. P. N. Rao, Manufacturing Technologyp, Vol- II, McGraw Hill Education (India) Private Limited
- 3. B. S. Raghuwanshi, Workshop Technology, Vol-II, Dhanpat Rai & Co.
- 4. E. P. DeGrmo, J. T. Black and A. Kosher, Material and processes in manufacturing, PHI
- 5. Additive Manufacturing Technologies (Authors: Ian Gibson , David Rosen , Brent Stucker , Mahyar Khorasani)
- 6. "Material Science and Physical Metallurgy", Dr.V.DKodgere, Everest Publication, Pune.

- "Physical Metallurgy", S H Avner, McGraw Hill Publication.
 "Material science and metallurgy", O P Khanna, Khanna Publication, Delhi.

Unit Test

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Co	ourse	Modelling for 3D Printing (Course Code: MI1111401)							
Teaching Scheme	:	Examination Sch	eme	Credits Allotted					
Theory :- 03 Lectu	re	Theory Exam	02						
Practical:- 02 Hour	rs/Week	Internal Assessment	40 Marks	03					
		Term Work and Oral	50 Marks	01					
		Total	150 Marks	04					
Course		Modeling	I						
Prerequisites: -		ine design and Analysis outer Aided Machine Drawing							
Course	1. To int	roduce students to the basic co	oncepts of 3D prin	nting.					
Objectives: -	2. To de	velop the skills in Reading and	l Interpretation o	f Engineering Drawings for 3D					
	printi	ıg.							
	3. To fa	miliarize students with Solid	Works Software	to Crate 2D and 3D model,					
	Asser	nbly, Drafting and Sheet metal	modelling requi	red for 3D printing.					
Course	The stude	nts will be able to							
Outcomes: -	1 Undo	noton J the concepts of A dditio		and 2D mainting					
		rstand the concepts of Additiv	-						
		rstand the basic concept of ma	-	-					
		machine drawing for 3D printing.							
		Understand the concept of detail and assembly drawing.							
		ating 2D drawing of machine component using SolidWorks Software.ating 3D drawing of machine component using SolidWorks Software and							
	Unde	rstand the concepts for data p	reparation for 3D	printing.					

Unit-I	Introduction to 3D Printing	(06 Hrs.)					
Introductio	Introduction to 3D printing, Definition, 3D Printer, 3D Printing Technology, Process of 3D printing, Applications						
of 3D Print	ting, 3D Printing examples, 3D Printing advantages Additive manufacturing, Photopoly	merization,					
3D slicing,	STL file configuration,						
Unit-II	Design of component for 3D printing	(06 Hrs.)					
Introductio	n to machine design, Design procedure, Design consideration for casting, forging and	machining,					
Design for	manufacture and assembly. Selection of material.						
Unit-III	it-III Geometric Dimensioning and Tolerancing (GD & T) (06 Hrs.)						
Limit, Fit a	nd tolerances: Introduction, fundamental tolerances, deviations, methods of placing limit d	limensions,					
types of fits	s with symbols and applications, Geometric tolerance on drawing.						
Unit-IV	Assembly and Details Drawing	(06 Hrs.)					
Introductio	n to unit assembly drawing, steps involved in preparing assembly drawing from details and	vice versa.					
Types of di	Types of drawing: Machine drawing, production drawing, drawing for catalogue. Drawing standards.						
Unit-VDrawing for 3D printing using CAD software(06 Hrs.)							
Sketch Entities, Sketch Tools, Block, Relation and Dimensioning, fully defined, Over defined, under defined							
drawing. Part Modelling Tools, Features: Extrude, Revolve, Swept, Loft. Creating Reference, curves, Fillet							

features, Inserting Hole types, Creating Chamfer, Shell, rib, pattern and advanced modelling tools.

Unit-VI Part Modelling using CAD software

Part Modelling Tools, creating curves, Fillet features, Inserting Hole types, Creating Chamfer, Shell, rib, pattern and advanced modelling tools.

Data Preparation for 3D Printing: 3D Printing interfaces, STL interface Specification, Creating STL file, Repair of STL files, STL data Manipulation-Advantages and limitations of STL file format. Part orientation and support generation-Model Slicing and Contour Data organization, Direct and adaptive slicing: Identification of peak features-Tool Path generation

PBL

Student can do small mini project or working model by using above knowledge

Term Work

Term work shall consist of:

- 1. Case study on 3D printing technology, Type of 3D Printer.
- 2. Detail assignment on basic design concepts.
- 3. Problems based on limit, fit and tolerances.
- 4. Detail to assembly drawing of simple machine components.
- 5. Assembly to detail drawing of simple machine components.
- 6. Sketcher drawings using Solid Modeling software
- 7. Part modelling using Solid Modeling software.
- 8. Data preparation for 3D printing for a simple machine component.

Text Books

- 1. Kuang-Hua Chang, "Motion Simulation and Mechanism Design with SOLIDWORKS Motion 2018", SDC Publishers, 2018
- 2. KHURM, R. (2005). Machine design.

Reference Books

- 1. Ibrahim Zeid and R. Siva-Subramaniam "CAD/CAM- Theory and Practice", Tata McGraw Hill, Publishing Co. 2009.
- 2. Kumar, L. J., Pandey, P. M., & Wimpenny, D. I. (Eds.). (2019). 3D printing and additive manufacturing technologies (Vol. 311). Singapore:: Springer.
- 3. Rao P. N., "CAD/CAM", Tata McGraw Hill.
- 4. Foley, Van Dam, Feiner and Hughes, "Computer Graphics Principles and Practice", Second edition, Addison– Wesley, 2000.
- 5. Martenson, E. Micheal, "Geometric Modelling", John Wiley & Sons, 1995.
- 6. Ronald E. Barr, DavorJuricic, Thomas J. Krueger, "Engineering & Computer Graphics Workbook Using SolidWorks 2014", SDC Publication, 2014.
- 7. John Willis, Sandeep Dogra, "SOLIDWORKS 2019: A Power Guide for Beginners and Intermediate User", published by CADArtifex, 2019.

End Semester Practical/Oral examination:

- 1. Practical examination duration is Two hours, based on the Term work.
- 2. Questions provided for practical examination should contain minimum five and not more than ten parts.
- 3. Evaluation of practical examination to be done based on the performance of students work in laboratory.

*Oral examination should also be conducted to check the knowledge of conventional and SolidWorks drawing.

Course Structure and Syllabus for

Minor Degree Programme: Energy Engineering

(CBCS 2023 Course) As per NEP 2020 Guidelines

Sr.	Course	Teaching Scheme (Hrs./Week) Examination Scheme (Marks)				xs)	Credits								
No	Code	Course	L	Р	Т	ESE	IA	TW	PR	OR	Total	TH	Pr /Or	Tut	Total
1.	MI1111302	Sem III Fundamentals of Energy Engineering	3	2	0	60	40	25	-	25	125	3	1	-	4
2.	MI1111402	Sem IV Non-Renewable Energy Technologies	3	2	0	60	40	25	-	25	125	3	1	-	4
3.	MI1111502	Sem V Renewable Energy Technologies	3	2	0	60	40	25	-	25	125	3	1	-	4
4.	MI1111602	Sem VI Energy Audit and Management	3	2	0	60	40	25	-	25	125	3	1	-	4
5.	MI1111702	Sem VII Project	-	4	-	-	-	50	-	50	100	-	4	-	4
		Total	12	12	0	240	160	150	0	150	700	12	8	0	20

Designation of Course	Fundamentals of Energy Engineering (Course Code: MI1111302)							
Teaching Scheme	Examination Scher	Credits Allotted						
Theory: - 03 Hours/ Week	End Semester Examination	60 Marks	03					
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	05					
	Term Work and Oral	50 Marks	01					
	Total	150 Marks	04					

Course	1. Engineering Mathematics.
Prerequisites:	2. Engineering Physics.
	To provide knowledge about
Course	1. Laws of thermodynamics & their applications.
Objectives: -	2. Properties of pure substances & vapor processes.
	3. Fuels and concepts of combustion.
	On completion of the course, students will be able to-
	1. Understand concepts of first law of thermodynamic and its application.
	2. Understand concepts second law of thermodynamics, entropy and availability.
Course	3. Apply the knowledge of Properties of steam for different vapor Processes.
Outcomes: -	4. Apply the knowledge of properties of steam for different power cycles.
	5. Understand the different air standard cycles and analyze it.
	6. Understand the different type of fuels, concepts of combustion and analyze exhaust
	gas composition.

Unit-I	Laws of Thermodynamics	(06 Hrs.)	
Thermodyna	Thermodynamics-introduction, energy and work transfer, zeroth law of thermodynamics, statement of first		
law of therm	law of thermodynamics, Joule's experiment, Applications of first law to flow and non-flow processes.		
Steady flow	energy equation and its applications to different devices. Perpetual Motion Ma	chine of first	
kind (PMM	-I). Limitations of first law of thermodynamics. Kelvin-Planck's statement	& Clausiu's	
statements f	or 2 nd law of thermodynamics, Heat engine, refrigerator and heat pump, Perp	etual Motion	
Machine of a	Machine of second kind (PMM-II), Carnot cycle & Carnot heat engine.		
Unit-II	Unit-IIProperties of Fluids and Gas Processes(06 Hrs.)		
Definition of fluid, fluid properties viz. mass density, specific weight, specific volume, specific gravity,			
viscosity, vapor pressure, compressibility, elasticity, surface tension and capillarity. Equation of state.			
Non flow and steady flow gas processes, Constant pressure process, Constant volume process, Constant			
temperature process, Isentropic process, Polytrophic process, Hyperbolic process, work transfer & heat			
transfer during various processes.			
Unit-III	Introduction to Heat Transfer	(06 Hrs.)	
Statement and explanation of Fourier's law of heat conduction. Conducting and insulating materials and			
their properties. Composite slab, Electrical analogy. Newton's law of cooling, Natural and forced			
convection- applications. Types of fins. Heat exchangers classification and applications. Stefan Boltzmann's law. Concept of shape factor.			
		(0 (H _{mg}))	
Unit-IV	Energy Producing devices	(06 Hrs.)	

Internal Combustion Engines: Two stroke, Four Stroke Cycles, Construction and working of C.I. and S.I. Engines. Modern trends in IC engines. Impulse momentum principle, Impact of jet, Hydraulic turbines: Impulse & reaction water turbines. Steam turbines and gas turbines: Impulse & reaction. Steam generators.(Theoretical study using schematic diagrams)

Unit-V	Energy Absorbing Devices	(06 Hrs.)
Vapor compression and vapor absorption refrigeration system, house hold refrigerator, window air conditioner. Reciprocating and rotary compressors and pumps, Blowers, Fans (Theoretical study using schematic diagrams)		
Unit-VI	Introduction to energy technologies	(06 Hrs.)
Renewable and nonrenewable, solar flat plate collector, Wind, Geothermal, Wave, Tidal, Hydro power, Bio-gas, Bio-Diesel, Nuclear power. (Theoretical study using schematic diagrams), Current Energy Scenario.		

Text Books

- 1. V. P. Vasandani and D. S. Kumar, Heat Engineering Metropolitan Book Company, New Delhi.
- 2. R S Khurmi and J K Gupta, Textbook of Thermal Engineering, S Chand publications.

Reference Books

- 1. P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications.
- 2. Y. A. Cengel & M.A. Boles, Thermodynamics -An engineering approach, Tata McGraw Hill Publications.
- 3. Rayner Joel, Engineering Thermodynamics, ELBS Longman.
- 4. R. K. Rajput, Engineering Thermodynamics, Laxmi Publications.
- 5. Kothandarman& S. Domkundwar, "Thermal Engineering" Dhanpat Rai and Sons.
- 6. P. L. Ballaney, Thermal Engineering, Khanna Publications.

Project Based Learning

Topics for project based learning based on the syllabus contents

- 1. To prepare demonstration model of Heat Pump
- 2. To prepare demonstration model of refrigerator
- 3. To prepare demonstration model of Heat Exchanger.
- 4. To prepare demonstration model of types of fin
- 5. To prepare demonstration model of I. C. Engines
- 6. To prepare demonstration model of Steam Turbine
- 7. To prepare demonstration model of Gas Turbine
- 8. To prepare demonstration model of Impulse Turbine
- 9. To prepare demonstration model of Fransis Turbine
- 10. To prepare demonstration model of Kaplane Turbine
- 11. To prepare demonstration model of Vapour Absorption refrigeration system
- 12. To prepare demonstration model of Vapour Compression refrigeration system
- 13. To prepare demonstration model of window air conditioning system

List of Practical:

1. To demonstrate steady flow energy equation for engineering applications such as heat

exchangers, turbo machinery, boiler, etc.

- 2. To determine viscosity of fluid.
- 3. To demonstrate second law of thermodynamic through real life application. (Kelvin-Planck's statement)
- 4. Demonstration second law of thermodynamic through real life application. (Clausius statement)
- 5. Demonstration of Two stroke and four stroke engine
- 6. Demonstration of pumps and compressor
- 7. Study of domestic refrigerator & window air-conditioner
- 8. Study and trial on Bomb calorimeter
- 9. Trial on Vapour Compression Refrigeration systems

Unit Test

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI

Designation of Course	Non-Renewable Energy Technologies (Course Code: MI1111402)			
Teaching Scheme	Examination Scheme		Credits Allotted	
Theory: 03 Hours/ Week	End Semester Examination	60 Marks	03	
Practical: - 02 Hours/ Week	Internal Assessment	40 Marks	- 03	
	Term Work & Oral	50 Marks	01	
	Total	150 Marks	04	

Course Prerequisites:-	 Mechanical Engineering System. Thermodynamic principals Thermodynamic Applications 	
Course Objectives:-	 To explain the concepts of different types of Power Plants To study and analyze different types of Steam Condenser, Cooling Towers. 	
	On completion of the course, students will be able to-	
	1. Understand fundamentals of Boilers	
	2. Understand fundamentals of Thermal Power Plant	
Course	3. Understand fundamentals of Gas Power Plants	
Outcomes:-	4. Understand fundamentals of Nuclear power plants.	
	5. Understand fundamentals of heat exchangers	
	6. Understand study fundamentals of Power Plant Economics.	

Unit No. -I Boiler , Mountings and Accessories

Introduction, Classification of boilers, Features of Low and high pressure boiler, construction and working of boilers, Fluidize bed combustion, boiler mountings and Accessories. Heat balance analysis.

Unit No.-II Steam Power Plant:

Introduction, Steam Power Plant, Thermal Power Plant, Construction and Working, Role of thermal power plant in current power generation scenario, Selection site for thermal power plant. Basic Rankine cycle.

Unit No. -III Gas Power Plant

Introduction, Components of Gas Turbine Power plants, Simple gas turbine power Plant, Classification of Gas turbines, Advantages of Gas turbine, Brayton cycle, Jet Engines

Unit No.-IV Nuclear Power plant

Basic Principles of Nuclear Energy, Nuclear reactor, Nuclear Power Plants, Nuclear power-Radio activity, Working of a nuclear power plant, PWR, BWR and gas cooled reactors, Advantages and Disadvantages of Nuclear power plant.

Unit NoV	Heat Exchangers used In power Plants And Instrumentation (61)	
Classification	of Heat Exchangers, Types of Condensers, Types of Cooling	g Tower,
Construction and Working, Advantages and Disadvantages.		
Instruments: Drum level Controls, Main Steam Temperature Control, Combustion Control,		
Measuring Instruments (Temperature, pressure, Velocity, Fluid flow)		
Unit NoVI	Power Plant Economics	(6 Hrs)

(6 Hrs)

(6 Hrs)

(6 Hrs)

(6 Hrs)

Power Plant Economics - Cost of electric energy, fixed and operating costs, energy rates, types tariffs, economics of load sharing, Load Curves, Load duration Curves, types of load and their characteristics, performance and operational characteristics of power plants, comparison of various power plants, Energy, Economic and Environmental issues of Power plants, Emission norms for power plants.

Term work:

- 1. Study of Different types of boilers
- 2. Study of Boiler Mountings and Accessories
- 3. Study of Steam Power Plant
- 4. Study of Thermal Power Plant
- 5. Study of Nuclear power plant
- 6. Study of Power plant Instrumentation.
- 7. Study of Heat Exchangers used in Power Plant
- 8. Visit to power plant.
- 9. Case Study on Plant Safety and Maintenance
- 10. Case Study on Economic and Environmental issues of Power plants

Project Based Learning

Following is the list of Topics for project based learning (Not Limited to) based on the syllabus Contents:

- 1. To prepare a chart on Thermal Power Plant
- 2. To prepare a chart on Steam Condenser and Cooling Towers
- 3. To prepare demonstration model of Thermal Power Plant
- 4. To prepare demonstration model of Gas Power Plants
- 5. To prepare demonstration model of Steam Condenser
- 6. To prepare demonstration model of Cooling Towers
- 7. Case study on Thermal Power Plant
- 8. Case study on Gas Power Plants

Text Books:

- 1. Modern Power Station Practice, Vol.6, Instrumentation, Controls and Testing, Pergamon Press, Oxford, 1971.
- 2. John V Grimaldi and Rollin H Simonds, Safety Management
- 3. M. M. El Wakil, Power Plant Technology Mc Graw Hill. Int. Edition.
- 4. Domkundwar and Arora, Power Plant Engineering, Dhanpatrai and Sons.

Reference Books

- 1. Grainger John J, and Stevenson Jr. W.D. Power System Analysis, McGraw Hill 1994
- 2. L. K. Kirchmeyer, Economic Operation of Power Systems, John Wiley and Sons, 1993.
- 3. C. A. Gross, Power System Analysis, John Wiley and Sons, Inc. 1986.
- 4. John Weisman & L.E. Eckart, Modern Power Engineering, Prentice Hall, 1985
- 5. A course on Power Plant Engineering Ramlingam SCITECH Publication
- 6. S. P. Sukhatme, Solar Energy, Tata McGraw Hill, 3rdEdition 1996.
- 7. G. D. Rai, Non-Conventional Energy Sources, Khanna Publishers, 2011
- 8. P. K. Nag, Power plant Engineering, TMH, 3rd Edition 2002

Unit Test –

Unit Test-I	Unit- I, II, III
Unit Test-II	Unit- IV, V, VI