Subject : Numerical Methods

Day : Saturday
Date : 17/12/2016

S.D.E.

Time: 02.00 PM TO 05.00 PM Max Marks: 80 Total Pages: 2

N.B.:

- 1) Attempt **ANY FIVE** questions from Section I and **ANY TWO** questions from Section II.
- 2) Answers to both the sections should be written in the **SAME** answer book.
- 3) Use of simple calculators and logarithmic table is **ALLOWED**.
- 4) Figures to the right indicate FULL marks.

SECTION - I

Q.1 Solve the following system of linear equations using Gauss Seidal Method: [10]

$$5x + 2y + z = 12$$

$$x + 4y + 2z = 15$$

$$x + 2y + 5z = 20$$

Q.2 Solve the following system of equations by the Gauss Elimination Method. [10]

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

Q.3 The table gives the distance in miles of the visible horizon for the given heights [10] in feet above the earth's surface:

X (height)	100	150	200	250	300	350	400
Y(distance)	10.62	13.02	15.02	16.80	18.40	19.80	21.25

Use Newton's forward interpolation formula to find the value of y when x = 218.

Q.4 Fit a straight line of the form y = a + bx to the following data by method of least [10] squares.

X	4	5	7	10	11	13
Y	13	15	14	9	19	21

Estimate y when x = 6.

Q.5 Convert the following:

[10]

- a) $2AF_{16} = ?_{10}$
- **b)** $1100110101_2 = ?_8$

Q.6 Explain the following:

[10]

- a) Error propagation
- b) Accuracy and precision

P.T.O.