CHANDVAD - IV: SUMMER - 2016

Subject: Elective-II: Operations Research (Production Management)

Day : Saturday
Date : 04/06/2016

S.D.E.

Time: 02.00 P.M. TO 05.00 P.M. Max Marks: 70 Total Pages: 1

N.B.:

- Attempt any FOUR questions from Section –I and any TWO questions from Section –II.
- 2) Figures to the right indicate **FULL** marks.
- 3) Answers to both the sections should be written in **SAME** answer book.
- 4) Use of non programmable **CALCULATOR** is allowed.

SECTION-I

Q.1 Explain the term parametric programming pointing out its characteristics. (10)

Q.2 Discuss Inventory control techniques. (10)

Q.3 What do you understand by a 'Queue'? Explain 'Applied Queuing Models'. (10)

Q.4 Explain the concept of Dynamic Programming and give a mathematical (10) formulation of Dynamic Programming Problem.

Q.5 Write short notes on any **TWO** of the following: (10)

- a) System Reliability
- b) Quadratic Programming
- c) Replacement Models and Policies
- d) Sensitivity Analysis

SECTION-II

Q.6 A firm is considering replacement of a machine, whose cost price is Rs. 12, 200 (15) and the scrap value Rs. 200. The running (maintenance and operating) costs are found from experience to be as follows:

Year	1	2	3	4	5	6	7	8
Running	200	500	800	1200	1800	2500	3200	4000
Cost (Rs.)								

When should the machine be replaced?

Q.7 What is Network Analysis? Explain the areas of application of Network (15) Models.

Q.8 Solve graphically the following Non Linear Programming problem: (15)

Maximize $Z = 8x_1 - x_1^2 + 8x_2 - x_2^2$

Subject to the constraints

$$x_1 + x_2 \le 12$$

$$x_1 - x_2 \ge 4$$

and $x_1, x_2 \ge 0$.

* * * *